A Short-Term Load Forecasting Model Based on Crisscross Grey Wolf Optimizer and Dual-Stage Attention Mechanism
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Dongxiao Niu & Shuyu Dai, 2017. "A Short-Term Load Forecasting Model with a Modified Particle Swarm Optimization Algorithm and Least Squares Support Vector Machine Based on the Denoising Method of Empirical Mode Decomposition and Gre," Energies, MDPI, vol. 10(3), pages 1-20, March.
- Yu, Feng & Xu, Xiaozhong, 2014. "A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network," Applied Energy, Elsevier, vol. 134(C), pages 102-113.
- Hashim, Fatma A. & Houssein, Essam H. & Hussain, Kashif & Mabrouk, Mai S. & Al-Atabany, Walid, 2022. "Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 84-110.
- Niu, Zhewen & Yu, Zeyuan & Tang, Wenhu & Wu, Qinghua & Reformat, Marek, 2020. "Wind power forecasting using attention-based gated recurrent unit network," Energy, Elsevier, vol. 196(C).
- Li, Song & Goel, Lalit & Wang, Peng, 2016. "An ensemble approach for short-term load forecasting by extreme learning machine," Applied Energy, Elsevier, vol. 170(C), pages 22-29.
- Fazlipour, Zahra & Mashhour, Elaheh & Joorabian, Mahmood, 2022. "A deep model for short-term load forecasting applying a stacked autoencoder based on LSTM supported by a multi-stage attention mechanism," Applied Energy, Elsevier, vol. 327(C).
- Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
- Seon Hyeog Kim & Gyul Lee & Gu-Young Kwon & Do-In Kim & Yong-June Shin, 2018. "Deep Learning Based on Multi-Decomposition for Short-Term Load Forecasting," Energies, MDPI, vol. 11(12), pages 1-17, December.
- Meng, Anbo & Chen, Shun & Ou, Zuhong & Ding, Weifeng & Zhou, Huaming & Fan, Jingmin & Yin, Hao, 2022. "A hybrid deep learning architecture for wind power prediction based on bi-attention mechanism and crisscross optimization," Energy, Elsevier, vol. 238(PB).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Umme Mumtahina & Sanath Alahakoon & Peter Wolfs, 2024. "Hyperparameter Tuning of Load-Forecasting Models Using Metaheuristic Optimization Algorithms—A Systematic Review," Mathematics, MDPI, vol. 12(21), pages 1-51, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wei Sun & Chongchong Zhang, 2018. "A Hybrid BA-ELM Model Based on Factor Analysis and Similar-Day Approach for Short-Term Load Forecasting," Energies, MDPI, vol. 11(5), pages 1-18, May.
- Zhang, Ziyuan & Wang, Jianzhou & Wei, Danxiang & Luo, Tianrui & Xia, Yurui, 2023. "A novel ensemble system for short-term wind speed forecasting based on Two-stage Attention-Based Recurrent Neural Network," Renewable Energy, Elsevier, vol. 204(C), pages 11-23.
- Yuqi Dong & Xuejiao Ma & Chenchen Ma & Jianzhou Wang, 2016. "Research and Application of a Hybrid Forecasting Model Based on Data Decomposition for Electrical Load Forecasting," Energies, MDPI, vol. 9(12), pages 1-30, December.
- Luca Massidda & Marino Marrocu, 2017. "Decoupling Weather Influence from User Habits for an Optimal Electric Load Forecast System," Energies, MDPI, vol. 10(12), pages 1-16, December.
- He, Feifei & Zhou, Jianzhong & Feng, Zhong-kai & Liu, Guangbiao & Yang, Yuqi, 2019. "A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm," Applied Energy, Elsevier, vol. 237(C), pages 103-116.
- Wu, Zhuochun & Zhao, Xiaochen & Ma, Yuqing & Zhao, Xinyan, 2019. "A hybrid model based on modified multi-objective cuckoo search algorithm for short-term load forecasting," Applied Energy, Elsevier, vol. 237(C), pages 896-909.
- Meng, Anbo & Chen, Shu & Ou, Zuhong & Xiao, Jianhua & Zhang, Jianfeng & Chen, Shun & Zhang, Zheng & Liang, Ruduo & Zhang, Zhan & Xian, Zikang & Wang, Chenen & Yin, Hao & Yan, Baiping, 2022. "A novel few-shot learning approach for wind power prediction applying secondary evolutionary generative adversarial network," Energy, Elsevier, vol. 261(PA).
- Heng, Jiani & Wang, Jianzhou & Xiao, Liye & Lu, Haiyan, 2017. "Research and application of a combined model based on frequent pattern growth algorithm and multi-objective optimization for solar radiation forecasting," Applied Energy, Elsevier, vol. 208(C), pages 845-866.
- Lin Lin & Lin Xue & Zhiqiang Hu & Nantian Huang, 2018. "Modular Predictor for Day-Ahead Load Forecasting and Feature Selection for Different Hours," Energies, MDPI, vol. 11(7), pages 1-30, July.
- Wu, Qiang & Zheng, Hongling & Guo, Xiaozhu & Liu, Guangqiang, 2022. "Promoting wind energy for sustainable development by precise wind speed prediction based on graph neural networks," Renewable Energy, Elsevier, vol. 199(C), pages 977-992.
- Zhang, Guoqiang & Guo, Jifeng, 2020. "A novel ensemble method for hourly residential electricity consumption forecasting by imaging time series," Energy, Elsevier, vol. 203(C).
- Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
- Zaki Masood & Rahma Gantassi & Ardiansyah & Yonghoon Choi, 2022. "A Multi-Step Time-Series Clustering-Based Seq2Seq LSTM Learning for a Single Household Electricity Load Forecasting," Energies, MDPI, vol. 15(7), pages 1-11, April.
- Monika Zimmermann & Florian Ziel, 2024. "Efficient mid-term forecasting of hourly electricity load using generalized additive models," Papers 2405.17070, arXiv.org.
- Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
- Essam H. Houssein & Awny Sayed, 2023. "Dynamic Candidate Solution Boosted Beluga Whale Optimization Algorithm for Biomedical Classification," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
- Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
- Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A temporal domain generalization approach incorporating hybrid model and adversarial relationship-based training," Applied Energy, Elsevier, vol. 355(C).
- Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
- Sumit Saroha & Marta Zurek-Mortka & Jerzy Ryszard Szymanski & Vineet Shekher & Pardeep Singla, 2021. "Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals," Energies, MDPI, vol. 14(19), pages 1-21, September.
More about this item
Keywords
short-term load prediction; dual-stage attention mechanism; crisscross grey wolf optimizer;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2878-:d:1102690. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.