IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2623-d786419.html
   My bibliography  Save this article

A Multi-Step Time-Series Clustering-Based Seq2Seq LSTM Learning for a Single Household Electricity Load Forecasting

Author

Listed:
  • Zaki Masood

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

  • Rahma Gantassi

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

  • Ardiansyah

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

  • Yonghoon Choi

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

Abstract

The deep learning (DL) approaches in smart grid (SG) describes the possibility of shifting the energy industry into a modern era of reliable and sustainable energy networks. This paper proposes a time-series clustering framework with multi-step time-series sequence to sequence (Seq2Seq) long short-term memory (LSTM) load forecasting strategy for households. Specifically, we investigate a clustering-based Seq2Seq LSTM electricity load forecasting model to undertake an energy load forecasting problem, where information input to the model contains individual appliances and aggregate energy as historical data of households. The original dataset is preprocessed, and forwarded to a multi-step time-series learning model which reduces the training time and guarantees convergence for energy forecasting. Furthermore, simulation results show the accuracy performance of the proposed model by validation and testing cluster data, which shows a promising potential of the proposed predictive model.

Suggested Citation

  • Zaki Masood & Rahma Gantassi & Ardiansyah & Yonghoon Choi, 2022. "A Multi-Step Time-Series Clustering-Based Seq2Seq LSTM Learning for a Single Household Electricity Load Forecasting," Energies, MDPI, vol. 15(7), pages 1-11, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2623-:d:786419
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2623/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2623/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    2. Christian Janiesch & Patrick Zschech & Kai Heinrich, 2021. "Machine learning and deep learning," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 685-695, September.
    3. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    4. Faisal Mohammad & Young-Chon Kim, 2020. "Energy load forecasting model based on deep neural networks for smart grids," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(4), pages 824-834, August.
    5. Jeong, Dongyeon & Park, Chiwoo & Ko, Young Myoung, 2021. "Short-term electric load forecasting for buildings using logistic mixture vector autoregressive model with curve registration," Applied Energy, Elsevier, vol. 282(PB).
    6. Gde Dharma Nugraha & Ardiansyah Musa & Jaiyoung Cho & Kishik Park & Deokjai Choi, 2018. "Lambda-Based Data Processing Architecture for Two-Level Load Forecasting in Residential Buildings," Energies, MDPI, vol. 11(4), pages 1-20, March.
    7. Yi Yang & Zhihao Shang & Yao Chen & Yanhua Chen, 2020. "Multi-Objective Particle Swarm Optimization Algorithm for Multi-Step Electric Load Forecasting," Energies, MDPI, vol. 13(3), pages 1-19, January.
    8. Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
    9. Seon Hyeog Kim & Gyul Lee & Gu-Young Kwon & Do-In Kim & Yong-June Shin, 2018. "Deep Learning Based on Multi-Decomposition for Short-Term Load Forecasting," Energies, MDPI, vol. 11(12), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Massaoudi & Shady S. Refaat & Haitham Abu-Rub & Ines Chihi & Fakhreddine S. Oueslati, 2020. "PLS-CNN-BiLSTM: An End-to-End Algorithm-Based Savitzky–Golay Smoothing and Evolution Strategy for Load Forecasting," Energies, MDPI, vol. 13(20), pages 1-29, October.
    2. Hadjout, D. & Torres, J.F. & Troncoso, A. & Sebaa, A. & Martínez-Álvarez, F., 2022. "Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market," Energy, Elsevier, vol. 243(C).
    3. Jun Hao & Xiaolei Sun & Qianqian Feng, 2020. "A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm," Energies, MDPI, vol. 13(3), pages 1-25, January.
    4. Dana-Mihaela Petroșanu & Alexandru Pîrjan, 2020. "Electricity Consumption Forecasting Based on a Bidirectional Long-Short-Term Memory Artificial Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
    5. Ding, Zhikun & Chen, Weilin & Hu, Ting & Xu, Xiaoxiao, 2021. "Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building," Applied Energy, Elsevier, vol. 288(C).
    6. Seok-Jun Bu & Sung-Bae Cho, 2020. "Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-16, September.
    7. Salam, Abdulwahed & El Hibaoui, Abdelaaziz, 2021. "Energy consumption prediction model with deep inception residual network inspiration and LSTM," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 97-109.
    8. Ahajjam, Mohamed Aymane & Bonilla Licea, Daniel & Ghogho, Mounir & Kobbane, Abdellatif, 2022. "Experimental investigation of variational mode decomposition and deep learning for short-term multi-horizon residential electric load forecasting," Applied Energy, Elsevier, vol. 326(C).
    9. Renxi Gong & Xianglong Li, 2023. "A Short-Term Load Forecasting Model Based on Crisscross Grey Wolf Optimizer and Dual-Stage Attention Mechanism," Energies, MDPI, vol. 16(6), pages 1-24, March.
    10. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    11. Monika Zimmermann & Florian Ziel, 2024. "Efficient mid-term forecasting of hourly electricity load using generalized additive models," Papers 2405.17070, arXiv.org.
    12. Eduard Hartwich & Alexander Rieger & Johannes Sedlmeir & Dominik Jurek & Gilbert Fridgen, 2023. "Machine economies," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-13, December.
    13. Rainer Alt, 2021. "Electronic Markets on robotics," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 465-471, September.
    14. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    15. Sumit Saroha & Marta Zurek-Mortka & Jerzy Ryszard Szymanski & Vineet Shekher & Pardeep Singla, 2021. "Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals," Energies, MDPI, vol. 14(19), pages 1-21, September.
    16. Abubakar Ahmad Musa & Adamu Hussaini & Weixian Liao & Fan Liang & Wei Yu, 2023. "Deep Neural Networks for Spatial-Temporal Cyber-Physical Systems: A Survey," Future Internet, MDPI, vol. 15(6), pages 1-24, May.
    17. Cristina Keiko Yamaguchi & Stéfano Frizzo Stefenon & Ney Kassiano Ramos & Vanessa Silva dos Santos & Fernanda Forbici & Anne Carolina Rodrigues Klaar & Fernanda Cristina Silva Ferreira & Alessandra Ca, 2020. "Young People’s Perceptions about the Difficulties of Entrepreneurship and Developing Rural Properties in Family Agriculture," Sustainability, MDPI, vol. 12(21), pages 1-12, October.
    18. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
    19. Najla Alharbi & Bashayer Alkalifah & Ghaida Alqarawi & Murad A. Rassam, 2024. "Countering Social Media Cybercrime Using Deep Learning: Instagram Fake Accounts Detection," Future Internet, MDPI, vol. 16(10), pages 1-22, October.
    20. Suriyan Jomthanachai & Wai Peng Wong & Khai Wah Khaw, 2024. "An Application of Machine Learning to Logistics Performance Prediction: An Economics Attribute-Based of Collective Instance," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 741-792, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2623-:d:786419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.