IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224025702.html
   My bibliography  Save this article

Multi-energy load forecasting for integrated energy system based on sequence decomposition fusion and factors correlation analysis

Author

Listed:
  • Peng, Daogang
  • Liu, Yu
  • Wang, Danhao
  • Zhao, Huirong
  • Qu, Bogang

Abstract

Considering the seasonal and cyclical fluctuation of loads and the complexity of multi-energy coupling, this paper proposes a novel load forecasting model based on sequence decomposition fusion and factors correlation analysis. Firstly, the variational mode decomposition (VMD) is used to decompose the highly complex load sequences and the novel influencing factors correlation analysis (ICA) is proposed to select strong factors and remove weak feature variables to construct the input and output set. Secondly, this paper proposes the combined forecasting framework MTL-CNN-BiGRU-Attention to simultaneously forecast the cooling, heat, and electricity loads, along with BiGRU used as the hard sharing layer to deeply explore the coupling information between different types of loads. Meanwhile, the gray wolf algorithm (GWO) is improved to accurately and quickly search for the optimal hyperparameters of the model. Finally, the dataset of a comprehensive energy station in Shanghai is used to test our model, and the results show that the MAPE of the cooling and electricity loads forecasting achieve 5.501% and 5.821% in summer and 5.921%, 7.899% and 7.541% for the cooling, heat and electricity loads in transition season and winter, which confirms the effectiveness and superiority of our model.

Suggested Citation

  • Peng, Daogang & Liu, Yu & Wang, Danhao & Zhao, Huirong & Qu, Bogang, 2024. "Multi-energy load forecasting for integrated energy system based on sequence decomposition fusion and factors correlation analysis," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224025702
    DOI: 10.1016/j.energy.2024.132796
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224025702
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224025702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.