IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v192y2022icp84-110.html
   My bibliography  Save this article

Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems

Author

Listed:
  • Hashim, Fatma A.
  • Houssein, Essam H.
  • Hussain, Kashif
  • Mabrouk, Mai S.
  • Al-Atabany, Walid

Abstract

Recently, the numerical optimization field has attracted the research community to propose and develop various metaheuristic optimization algorithms. This paper presents a new metaheuristic optimization algorithm called Honey Badger Algorithm (HBA). The proposed algorithm is inspired from the intelligent foraging behavior of honey badger, to mathematically develop an efficient search strategy for solving optimization problems. The dynamic search behavior of honey badger with digging and honey finding approaches are formulated into exploration and exploitation phases in HBA. Moreover, with controlled randomization techniques, HBA maintains ample population diversity even towards the end of the search process. To assess the efficiency of HBA, 24 standard benchmark functions, CEC’17 test-suite, and four engineering design problems are solved. The solutions obtained using the HBA have been compared with ten well-known metaheuristic algorithms including Simulated annealing (SA), Particle Swarm Optimization (PSO), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Success-History based Adaptive Differential Evolution variants with linear population size reduction (L-SHADE), Moth-flame Optimization (MFO), Elephant Herding Optimization (EHO), Whale Optimization Algorithm (WOA), Grasshopper Optimization Algorithm (GOA), Thermal Exchange Optimization (TEO) and Harris hawks optimization (HHO). The experimental results, along with statistical analysis, reveal the effectiveness of HBA for solving optimization problems with complex search-space, as well as, its superiority in terms of convergence speed and exploration–exploitation balance, as compared to other methods used in this study. The source code of HBA is currently available for public at https://www.mathworks.com/matlabcentral/fileexchange/98204-honey-badger-algorithm.

Suggested Citation

  • Hashim, Fatma A. & Houssein, Essam H. & Hussain, Kashif & Mabrouk, Mai S. & Al-Atabany, Walid, 2022. "Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 84-110.
  • Handle: RePEc:eee:matcom:v:192:y:2022:i:c:p:84-110
    DOI: 10.1016/j.matcom.2021.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421002901
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammed M. Ahmed & Essam H. Houssein & Aboul Ella Hassanien & Ayman Taha & Ehab Hassanien, 2019. "Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 72(2), pages 243-259, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelazim G. Hussien & Diego Oliva & Essam H. Houssein & Angel A. Juan & Xu Yu, 2020. "Binary Whale Optimization Algorithm for Dimensionality Reduction," Mathematics, MDPI, vol. 8(10), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:192:y:2022:i:c:p:84-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.