Standard Load Profiles for Electric Vehicle Charging Stations in Germany Based on Representative, Empirical Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wolbertus, Rick & Kroesen, Maarten & van den Hoed, Robert & Chorus, Caspar, 2018. "Fully charged: An empirical study into the factors that influence connection times at EV-charging stations," Energy Policy, Elsevier, vol. 123(C), pages 1-7.
- Semen Uimonen & Matti Lehtonen, 2020. "Simulation of Electric Vehicle Charging Stations Load Profiles in Office Buildings Based on Occupancy Data," Energies, MDPI, vol. 13(21), pages 1-16, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wolbertus, Rick & van den Hoed, Robert & Kroesen, Maarten & Chorus, Caspar, 2021. "Charging infrastructure roll-out strategies for large scale introduction of electric vehicles in urban areas: An agent-based simulation study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 262-285.
- Pedro Faria & Zita Vale, 2022. "Realistic Load Modeling for Efficient Consumption Management Using Real-Time Simulation and Power Hardware-in-the-Loop," Energies, MDPI, vol. 16(1), pages 1-15, December.
- Budnitz, Hannah & Meelen, Toon & Schwanen, Tim, 2022. "Residential Neighbourhood Charging of Electric Vehicles: an exploration of user preferences," SocArXiv fsv7n, Center for Open Science.
- Khaleghikarahrodi, Mehrsa & Macht, Gretchen A., 2023. "Patterns, no patterns, that is the question: Quantifying users’ electric vehicle charging," Transport Policy, Elsevier, vol. 141(C), pages 291-304.
- Pablo Tamay & Esteban Inga, 2022. "Charging Infrastructure for Electric Vehicles Considering Their Integration into the Smart Grid," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
- Helmus, Jurjen R. & Lees, Michael H. & van den Hoed, Robert, 2022. "A validated agent-based model for stress testing charging infrastructure utilization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 237-262.
- Wang, Ning & Tian, Hangqi & Wu, Huahua & Liu, Qiaoqian & Luan, Jie & Li, Yuan, 2023. "Cost-oriented optimization of the location and capacity of charging stations for the electric Robotaxi fleet," Energy, Elsevier, vol. 263(PC).
- Nattavit Piamvilai & Somporn Sirisumrannukul, 2022. "Optimal Scheduling of Movable Electric Vehicle Loads Using Generation of Charging Event Matrices, Queuing Management, and Genetic Algorithm," Energies, MDPI, vol. 15(10), pages 1-26, May.
- Dominik Husarek & Vjekoslav Salapic & Simon Paulus & Michael Metzger & Stefan Niessen, 2021. "Modeling the Impact of Electric Vehicle Charging Infrastructure on Regional Energy Systems: Fields of Action for an Improved e-Mobility Integration," Energies, MDPI, vol. 14(23), pages 1-27, November.
- Andrea La Nauze & Lana Friesen & Kai Li Lim & Flavio Menezes & Lionel Page & Thara Philip & Jake Whitehead, 2024. "Can Electric Vehicles Aid the Renewable Transition? Evidence from a Field Experiment Incentivising Midday Charging," CESifo Working Paper Series 11386, CESifo.
- Lagomarsino, Maria & van der Kam, Mart & Parra, David & Hahnel, Ulf J.J., 2022. "Do I need to charge right now? Tailored choice architecture design can increase preferences for electric vehicle smart charging," Energy Policy, Elsevier, vol. 162(C).
- Wolff, Stefanie & Madlener, Reinhard, 2020. "Willing to Pay? Spatial Heterogeneity of e-Vehicle Charging Preferences in Germany," FCN Working Papers 9/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
- Seyed Mahdi Miraftabzadeh & Michela Longo & Federica Foiadelli, 2021. "Estimation Model of Total Energy Consumptions of Electrical Vehicles under Different Driving Conditions," Energies, MDPI, vol. 14(4), pages 1-15, February.
- Philipp A. Friese & Wibke Michalk & Markus Fischer & Cornelius Hardt & Klaus Bogenberger, 2021. "Charging Point Usage in Germany—Automated Retrieval, Analysis, and Usage Types Explained," Sustainability, MDPI, vol. 13(23), pages 1-26, November.
- Pramote Jaruwatanachai & Yod Sukamongkol & Taweesak Samanchuen, 2023. "Predicting and Managing EV Charging Demand on Electrical Grids: A Simulation-Based Approach," Energies, MDPI, vol. 16(8), pages 1-22, April.
- Wang, Shengyou & Zhuge, Chengxiang & Shao, Chunfu & Wang, Pinxi & Yang, Xiong & Wang, Shiqi, 2023. "Short-term electric vehicle charging demand prediction: A deep learning approach," Applied Energy, Elsevier, vol. 340(C).
- Wolff, Stefanie & Madlener, Reinhard, 2019. "Charged up? Preferences for Electric Vehicle Charging and Implications for Charging Infrastructure Planning," FCN Working Papers 3/2019, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Milan Straka & Rui Carvalho & Gijs van der Poel & v{L}ubov{s} Buzna, 2020. "Explaining the distribution of energy consumption at slow charging infrastructure for electric vehicles from socio-economic data," Papers 2006.01672, arXiv.org, revised Jun 2020.
- Alexandre Lucas & Ricardo Barranco & Nazir Refa, 2019. "EV Idle Time Estimation on Charging Infrastructure, Comparing Supervised Machine Learning Regressions," Energies, MDPI, vol. 12(2), pages 1-17, January.
More about this item
Keywords
electric vehicles; public charging station; standard load profile; power curve; empirical data analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2619-:d:1093426. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.