IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2619-d1093426.html
   My bibliography  Save this article

Standard Load Profiles for Electric Vehicle Charging Stations in Germany Based on Representative, Empirical Data

Author

Listed:
  • Christopher Hecht

    (Grid Integration and Storage System Analysis, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, 52074 Aachen, Germany
    Institute for Power Generation and Storage Systems (PGS), E.ON ERC, RWTH Aachen University, 52074 Aachen, Germany
    Juelich Aachen Research Alliance, JARA-Energy, 52056 Aachen, Germany)

  • Jan Figgener

    (Grid Integration and Storage System Analysis, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, 52074 Aachen, Germany
    Institute for Power Generation and Storage Systems (PGS), E.ON ERC, RWTH Aachen University, 52074 Aachen, Germany
    Juelich Aachen Research Alliance, JARA-Energy, 52056 Aachen, Germany)

  • Xiaohui Li

    (National Research Center for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China)

  • Lei Zhang

    (National Research Center for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China)

  • Dirk Uwe Sauer

    (Grid Integration and Storage System Analysis, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, 52074 Aachen, Germany
    Institute for Power Generation and Storage Systems (PGS), E.ON ERC, RWTH Aachen University, 52074 Aachen, Germany
    Juelich Aachen Research Alliance, JARA-Energy, 52056 Aachen, Germany
    Helmholtz Institute Muenster (HI MS), IEK-12, Forschungszentrum Jülich, 52428 Jülich, Germany)

Abstract

Electric vehicles are becoming dominant in the global automobile market due to their better environmental friendliness compared to internal combustion vehicles. An adequate network of public charging stations is required to fulfil the fast charging demands of EV users. Knowing the shape and amplitude of their power curves is essential for power purchase planning and grid capacity sizing. Based on a large-scale empirical and representative dataset, this paper creates standard load profiles for various power levels, station sizes, and operating environments. It is found that the average power per charge point increases with rated station power, particularly for a rated power above 100 kW, and decreases with the number of charge points per station for AC chargers. For AC chargers, it is revealed how the shape of the power curve largely depends on the environment of a station, with urban settings experiencing the highest average power of 0.71 kW on average leading to an annual energy sale of 6.2 MWh. These findings show that the rated grid capacity can be well below the sum of the rated power of each charge point.

Suggested Citation

  • Christopher Hecht & Jan Figgener & Xiaohui Li & Lei Zhang & Dirk Uwe Sauer, 2023. "Standard Load Profiles for Electric Vehicle Charging Stations in Germany Based on Representative, Empirical Data," Energies, MDPI, vol. 16(6), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2619-:d:1093426
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2619/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2619/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wolbertus, Rick & Kroesen, Maarten & van den Hoed, Robert & Chorus, Caspar, 2018. "Fully charged: An empirical study into the factors that influence connection times at EV-charging stations," Energy Policy, Elsevier, vol. 123(C), pages 1-7.
    2. Semen Uimonen & Matti Lehtonen, 2020. "Simulation of Electric Vehicle Charging Stations Load Profiles in Office Buildings Based on Occupancy Data," Energies, MDPI, vol. 13(21), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolbertus, Rick & van den Hoed, Robert & Kroesen, Maarten & Chorus, Caspar, 2021. "Charging infrastructure roll-out strategies for large scale introduction of electric vehicles in urban areas: An agent-based simulation study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 262-285.
    2. Pedro Faria & Zita Vale, 2022. "Realistic Load Modeling for Efficient Consumption Management Using Real-Time Simulation and Power Hardware-in-the-Loop," Energies, MDPI, vol. 16(1), pages 1-15, December.
    3. Budnitz, Hannah & Meelen, Toon & Schwanen, Tim, 2022. "Residential Neighbourhood Charging of Electric Vehicles: an exploration of user preferences," SocArXiv fsv7n, Center for Open Science.
    4. Khaleghikarahrodi, Mehrsa & Macht, Gretchen A., 2023. "Patterns, no patterns, that is the question: Quantifying users’ electric vehicle charging," Transport Policy, Elsevier, vol. 141(C), pages 291-304.
    5. Pablo Tamay & Esteban Inga, 2022. "Charging Infrastructure for Electric Vehicles Considering Their Integration into the Smart Grid," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    6. Helmus, Jurjen R. & Lees, Michael H. & van den Hoed, Robert, 2022. "A validated agent-based model for stress testing charging infrastructure utilization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 237-262.
    7. Wang, Ning & Tian, Hangqi & Wu, Huahua & Liu, Qiaoqian & Luan, Jie & Li, Yuan, 2023. "Cost-oriented optimization of the location and capacity of charging stations for the electric Robotaxi fleet," Energy, Elsevier, vol. 263(PC).
    8. Nattavit Piamvilai & Somporn Sirisumrannukul, 2022. "Optimal Scheduling of Movable Electric Vehicle Loads Using Generation of Charging Event Matrices, Queuing Management, and Genetic Algorithm," Energies, MDPI, vol. 15(10), pages 1-26, May.
    9. Dominik Husarek & Vjekoslav Salapic & Simon Paulus & Michael Metzger & Stefan Niessen, 2021. "Modeling the Impact of Electric Vehicle Charging Infrastructure on Regional Energy Systems: Fields of Action for an Improved e-Mobility Integration," Energies, MDPI, vol. 14(23), pages 1-27, November.
    10. Andrea La Nauze & Lana Friesen & Kai Li Lim & Flavio Menezes & Lionel Page & Thara Philip & Jake Whitehead, 2024. "Can Electric Vehicles Aid the Renewable Transition? Evidence from a Field Experiment Incentivising Midday Charging," CESifo Working Paper Series 11386, CESifo.
    11. Lagomarsino, Maria & van der Kam, Mart & Parra, David & Hahnel, Ulf J.J., 2022. "Do I need to charge right now? Tailored choice architecture design can increase preferences for electric vehicle smart charging," Energy Policy, Elsevier, vol. 162(C).
    12. Wolff, Stefanie & Madlener, Reinhard, 2020. "Willing to Pay? Spatial Heterogeneity of e-Vehicle Charging Preferences in Germany," FCN Working Papers 9/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    13. Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
    14. Seyed Mahdi Miraftabzadeh & Michela Longo & Federica Foiadelli, 2021. "Estimation Model of Total Energy Consumptions of Electrical Vehicles under Different Driving Conditions," Energies, MDPI, vol. 14(4), pages 1-15, February.
    15. Philipp A. Friese & Wibke Michalk & Markus Fischer & Cornelius Hardt & Klaus Bogenberger, 2021. "Charging Point Usage in Germany—Automated Retrieval, Analysis, and Usage Types Explained," Sustainability, MDPI, vol. 13(23), pages 1-26, November.
    16. Pramote Jaruwatanachai & Yod Sukamongkol & Taweesak Samanchuen, 2023. "Predicting and Managing EV Charging Demand on Electrical Grids: A Simulation-Based Approach," Energies, MDPI, vol. 16(8), pages 1-22, April.
    17. Wang, Shengyou & Zhuge, Chengxiang & Shao, Chunfu & Wang, Pinxi & Yang, Xiong & Wang, Shiqi, 2023. "Short-term electric vehicle charging demand prediction: A deep learning approach," Applied Energy, Elsevier, vol. 340(C).
    18. Wolff, Stefanie & Madlener, Reinhard, 2019. "Charged up? Preferences for Electric Vehicle Charging and Implications for Charging Infrastructure Planning," FCN Working Papers 3/2019, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    19. Milan Straka & Rui Carvalho & Gijs van der Poel & v{L}ubov{s} Buzna, 2020. "Explaining the distribution of energy consumption at slow charging infrastructure for electric vehicles from socio-economic data," Papers 2006.01672, arXiv.org, revised Jun 2020.
    20. Alexandre Lucas & Ricardo Barranco & Nazir Refa, 2019. "EV Idle Time Estimation on Charging Infrastructure, Comparing Supervised Machine Learning Regressions," Energies, MDPI, vol. 12(2), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2619-:d:1093426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.