IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p338-d1017758.html
   My bibliography  Save this article

Realistic Load Modeling for Efficient Consumption Management Using Real-Time Simulation and Power Hardware-in-the-Loop

Author

Listed:
  • Pedro Faria

    (GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, LASI—Intelligent Systems Associate Laboratory, Polytechnic of Porto, 4200-072 Porto, Portugal)

  • Zita Vale

    (GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, LASI—Intelligent Systems Associate Laboratory, Polytechnic of Porto, 4200-072 Porto, Portugal)

Abstract

By empowering consumers and enabling them as active players in the power and energy sector, demand flexibility requires more precise and sophisticated load modeling. In this paper, a laboratory testbed was designed and implemented for surveying the behavior of laboratory loads in different network conditions by using real-time simulation. Power hardware-in-the-loop was used to validate the load models by testing various technical network conditions. Then, in the emulation phase, the real-time simulator controlled a power amplifier and different laboratory equipment to provide a realistic testbed for validating the load models under different voltage and frequency conditions. In the case study, the power amplifier was utilized to supply a resistive load to emulate several consumer load modeling. Through the obtained results, the errors for each load level and the set of all load levels were calculated and compared. Furthermore, a fixed consumption level was considered. The frequency was changed to survey the behavior of the load during the grid’s instabilities. In the end, a set of mathematical equations were proposed to calculate power consumption with respect to the actual voltage and frequency variations.

Suggested Citation

  • Pedro Faria & Zita Vale, 2022. "Realistic Load Modeling for Efficient Consumption Management Using Real-Time Simulation and Power Hardware-in-the-Loop," Energies, MDPI, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:338-:d:1017758
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/338/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/338/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adam Summers & Jay Johnson & Rachid Darbali-Zamora & Clifford Hansen & Jithendar Anandan & Chad Showalter, 2020. "A Comparison of DER Voltage Regulation Technologies Using Real-Time Simulations," Energies, MDPI, vol. 13(14), pages 1-26, July.
    2. Kati Sidwall & Paul Forsyth, 2022. "A Review of Recent Best Practices in the Development of Real-Time Power System Simulators from a Simulator Manufacturer’s Perspective," Energies, MDPI, vol. 15(3), pages 1-17, February.
    3. Paweł Kelm & Irena Wasiak & Rozmysław Mieński & Andrzej Wędzik & Michał Szypowski & Ryszard Pawełek & Krzysztof Szaniawski, 2022. "Hardware-in-the-Loop Validation of an Energy Management System for LV Distribution Networks with Renewable Energy Sources," Energies, MDPI, vol. 15(7), pages 1-18, April.
    4. Semen Uimonen & Matti Lehtonen, 2020. "Simulation of Electric Vehicle Charging Stations Load Profiles in Office Buildings Based on Occupancy Data," Energies, MDPI, vol. 13(21), pages 1-16, October.
    5. Tuomas Messo & Roni Luhtala & Tomi Roinila & Erik de Jong & Rick Scharrenberg & Tommaso Caldognetto & Paolo Mattavelli & Yin Sun & Alejandra Fabian, 2019. "Using High-Bandwidth Voltage Amplifier to Emulate Grid-Following Inverter for AC Microgrid Dynamics Studies," Energies, MDPI, vol. 12(3), pages 1-18, January.
    6. Moiz Muhammad & Holger Behrends & Stefan Geißendörfer & Karsten von Maydell & Carsten Agert, 2021. "Power Hardware-in-the-Loop: Response of Power Components in Real-Time Grid Simulation Environment," Energies, MDPI, vol. 14(3), pages 1-20, January.
    7. Anna Sandhaas & Hanhee Kim & Niklas Hartmann, 2022. "Methodology for Generating Synthetic Load Profiles for Different Industry Types," Energies, MDPI, vol. 15(10), pages 1-29, May.
    8. Mohsen Khorasany & Donald Azuatalam & Robert Glasgow & Ariel Liebman & Reza Razzaghi, 2020. "Transactive Energy Market for Energy Management in Microgrids: The Monash Microgrid Case Study," Energies, MDPI, vol. 13(8), pages 1-23, April.
    9. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Georghiou, George E., 2021. "Social arrangements, technical designs and impacts of energy communities: A review," Renewable Energy, Elsevier, vol. 169(C), pages 1138-1156.
    10. Omid Abrishambaf & Pedro Faria & Luis Gomes & João Spínola & Zita Vale & Juan M. Corchado, 2017. "Implementation of a Real-Time Microgrid Simulation Platform Based on Centralized and Distributed Management," Energies, MDPI, vol. 10(6), pages 1-14, June.
    11. Daiva Stanelyte & Neringa Radziukyniene & Virginijus Radziukynas, 2022. "Overview of Demand-Response Services: A Review," Energies, MDPI, vol. 15(5), pages 1-31, February.
    12. Leila Luttenberger Marić & Hrvoje Keko & Marko Delimar, 2022. "The Role of Local Aggregator in Delivering Energy Savings to Household Consumers," Energies, MDPI, vol. 15(8), pages 1-27, April.
    13. Falko Ebe & Basem Idlbi & David E. Stakic & Shuo Chen & Christoph Kondzialka & Matthias Casel & Gerd Heilscher & Christian Seitl & Roland Bründlinger & Thomas I. Strasser, 2018. "Comparison of Power Hardware-in-the-Loop Approaches for the Testing of Smart Grid Controls," Energies, MDPI, vol. 11(12), pages 1-29, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Annette von Jouanne & Emmanuel Agamloh & Alex Yokochi, 2023. "Power Hardware-in-the-Loop (PHIL): A Review to Advance Smart Inverter-Based Grid-Edge Solutions," Energies, MDPI, vol. 16(2), pages 1-27, January.
    2. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    3. Ode Bokker & Henning Schlachter & Vanessa Beutel & Stefan Geißendörfer & Karsten von Maydell, 2022. "Reactive Power Control of a Converter in a Hardware-Based Environment Using Deep Reinforcement Learning," Energies, MDPI, vol. 16(1), pages 1-12, December.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    6. Olga Bogdanova & Karīna Viskuba & Laila Zemīte, 2023. "A Review of Barriers and Enables in Demand Response Performance Chain," Energies, MDPI, vol. 16(18), pages 1-33, September.
    7. Silva, Walquiria N. & Bandória, Luís H.T. & Dias, Bruno H. & de Almeida, Madson C. & de Oliveira, Leonardo W., 2023. "Generating realistic load profiles in smart grids: An approach based on nonlinear independent component estimation (NICE) and convolutional layers," Applied Energy, Elsevier, vol. 351(C).
    8. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    9. Sima, Catalina Alexandra & Popescu, Claudia Laurenta & Popescu, Mihai Octavian & Roscia, Mariacristina & Seritan, George & Panait, Cornel, 2022. "Techno-economic assessment of university energy communities with on/off microgrid," Renewable Energy, Elsevier, vol. 193(C), pages 538-553.
    10. Pereira, Géssica Michelle dos Santos & Weigert, Gabriela Rosalee & Macedo, Pablo Lopes & Silva, Kiane Alves e & Segura Salas, Cresencio Silvio & Gonçalves, Antônio Maurício de Matos & Nascimento, Hebe, 2022. "Quasi-dynamic operation and maintenance plan for photovoltaic systems in remote areas: The framework of Pantanal-MS," Renewable Energy, Elsevier, vol. 181(C), pages 404-416.
    11. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Ajla Mehinovic & Matej Zajc & Nermin Suljanovic, 2023. "Interpretation and Quantification of the Flexibility Sources Location on the Flexibility Service in the Distribution Grid," Energies, MDPI, vol. 16(2), pages 1-18, January.
    13. Lorenzo De Vidovich & Luca Tricarico & Matteo Zulianello, 2023. "How Can We Frame Energy Communities’ Organisational Models? Insights from the Research ‘Community Energy Map’ in the Italian Context," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    14. Mehmet Efe Biresselioglu & Siyami Alp Limoncuoglu & Muhittin Hakan Demir & Johannes Reichl & Katrin Burgstaller & Alessandro Sciullo & Edoardo Ferrero, 2021. "Legal Provisions and Market Conditions for Energy Communities in Austria, Germany, Greece, Italy, Spain, and Turkey: A Comparative Assessment," Sustainability, MDPI, vol. 13(20), pages 1-25, October.
    15. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    16. Michał Michna & Filip Kutt & Łukasz Sienkiewicz & Roland Ryndzionek & Grzegorz Kostro & Dariusz Karkosiński & Bartłomiej Grochowski, 2020. "Mechanical-Level Hardware-In-The-Loop and Simulation in Validation Testing of Prototype Tower Crane Drives," Energies, MDPI, vol. 13(21), pages 1-25, November.
    17. Ruben Barreto & Calvin Gonçalves & Luis Gomes & Pedro Faria & Zita Vale, 2022. "Evaluation Metrics to Assess the Most Suitable Energy Community End-Users to Participate in Demand Response," Energies, MDPI, vol. 15(7), pages 1-18, March.
    18. Sirviö, Katja & Motta, Sergio & Rauma, Kalle & Evens, Corentin, 2024. "Multi-level functional analysis of developing prosumers and energy communities with value creation framework," Applied Energy, Elsevier, vol. 368(C).
    19. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    20. Fioriti, Davide & Frangioni, Antonio & Poli, Davide, 2021. "Optimal sizing of energy communities with fair revenue sharing and exit clauses: Value, role and business model of aggregators and users," Applied Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:338-:d:1017758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.