IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v303y2021ics0306261921010187.html
   My bibliography  Save this article

Charging powers of the electric vehicle fleet: Evolution and implications at commercial charging sites

Author

Listed:
  • Simolin, Toni
  • Rauma, Kalle
  • Viri, Riku
  • Mäkinen, Johanna
  • Rautiainen, Antti
  • Järventausta, Pertti

Abstract

Electric vehicle (EV) charging is widely studied in the scientific literature. However, there seems to be a notable research gap regarding the charging power limitations of the on-board chargers of the EVs. In this paper, the present state of the maximum charging powers of the on-board chargers is thoroughly analysed using data from two commercial charging sites. Furthermore, the results of the analysis are used along with an EV fleet development model to form realistic future scenarios, which are then used for a simulation model that couples the charging sessions with measured charging profiles. The results of the simulations show that, due to the evolution of the EV fleet, the average energy consumption in commercial locations will increase by 134% on average from 5.6 to 8.7 kWh/EV to 13.0–19.6 kWh/EV during 2020–2040. Similarly, the peak of the normalized power increases by 77% on average from 1.1 to 1.4 kW/EV to 1.6–2.9 kW/EV. These values are essential to guide long-term decisions such as optimal sizing of charging infrastructure and parking policies.

Suggested Citation

  • Simolin, Toni & Rauma, Kalle & Viri, Riku & Mäkinen, Johanna & Rautiainen, Antti & Järventausta, Pertti, 2021. "Charging powers of the electric vehicle fleet: Evolution and implications at commercial charging sites," Applied Energy, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:appene:v:303:y:2021:i:c:s0306261921010187
    DOI: 10.1016/j.apenergy.2021.117651
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921010187
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scorrano, Mariangela & Danielis, Romeo & Giansoldati, Marco, 2020. "Dissecting the total cost of ownership of fully electric cars in Italy: The impact of annual distance travelled, home charging and urban driving," Research in Transportation Economics, Elsevier, vol. 80(C).
    2. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    3. Shepero, Mahmoud & Munkhammar, Joakim, 2018. "Spatial Markov chain model for electric vehicle charging in cities using geographical information system (GIS) data," Applied Energy, Elsevier, vol. 231(C), pages 1089-1099.
    4. Wolbertus, Rick & Kroesen, Maarten & van den Hoed, Robert & Chorus, Caspar, 2018. "Fully charged: An empirical study into the factors that influence connection times at EV-charging stations," Energy Policy, Elsevier, vol. 123(C), pages 1-7.
    5. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    6. Haupt, Leon & Schöpf, Michael & Wederhake, Lars & Weibelzahl, Martin, 2020. "The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids," Applied Energy, Elsevier, vol. 273(C).
    7. Deshmukh, Swaraj Sanjay & Pearce, Joshua M., 2021. "Electric vehicle charging potential from retail parking lot solar photovoltaic awnings," Renewable Energy, Elsevier, vol. 169(C), pages 608-617.
    8. Xiang, Yue & Jiang, Zhuozhen & Gu, Chenghong & Teng, Fei & Wei, Xiangyu & Wang, Yang, 2019. "Electric vehicle charging in smart grid: A spatial-temporal simulation method," Energy, Elsevier, vol. 189(C).
    9. Zhao, Yang & Wang, Zhenpo & Shen, Zuo-Jun Max & Sun, Fengchun, 2021. "Data-driven framework for large-scale prediction of charging energy in electric vehicles," Applied Energy, Elsevier, vol. 282(PB).
    10. Pareschi, Giacomo & Küng, Lukas & Georges, Gil & Boulouchos, Konstantinos, 2020. "Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data," Applied Energy, Elsevier, vol. 275(C).
    11. Gunkel, Philipp Andreas & Bergaentzlé, Claire & Græsted Jensen, Ida & Scheller, Fabian, 2020. "From passive to active: Flexibility from electric vehicles in the context of transmission system development," Applied Energy, Elsevier, vol. 277(C).
    12. Philipp Andreas Gunkel & Claire Bergaentzl'e & Ida Gr{ae}sted Jensen & Fabian Scheller, 2020. "From passive to active: Flexibility from electric vehicles in the context of transmission system development," Papers 2011.05830, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeynali, Saeed & Nasiri, Nima & Ravadanegh, Sajad Najafi & Marzband, Mousa, 2022. "A three-level framework for strategic participation of aggregated electric vehicle-owning households in local electricity and thermal energy markets," Applied Energy, Elsevier, vol. 324(C).
    2. Simolin, Toni & Rauma, Kalle & Rautiainen, Antti & Järventausta, Pertti, 2022. "Increasing charging energy at highly congested commercial charging sites through charging control with load balancing functionality," Applied Energy, Elsevier, vol. 326(C).
    3. Sridharan, S. & Sivakumar, S. & Shanmugasundaram, N. & Swapna, S. & Vasan Prabhu, V., 2023. "A hybrid approach based energy management for building resilience against power outage by shared parking station for EVs," Renewable Energy, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    2. Alexandra Märtz & Uwe Langenmayr & Sabrina Ried & Katrin Seddig & Patrick Jochem, 2022. "Charging Behavior of Electric Vehicles: Temporal Clustering Based on Real-World Data," Energies, MDPI, vol. 15(18), pages 1-26, September.
    3. Einolander, Johannes & Lahdelma, Risto, 2022. "Multivariate copula procedure for electric vehicle charging event simulation," Energy, Elsevier, vol. 238(PA).
    4. Strobel, Leo & Schlund, Jonas & Pruckner, Marco, 2022. "Joint analysis of regional and national power system impacts of electric vehicles—A case study for Germany on the county level in 2030," Applied Energy, Elsevier, vol. 315(C).
    5. Heffron, Raphael J. & Körner, Marc-Fabian & Schöpf, Michael & Wagner, Jonathan & Weibelzahl, Martin, 2021. "The role of flexibility in the light of the COVID-19 pandemic and beyond: Contributing to a sustainable and resilient energy future in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    6. Ding, Xiaofeng & Lu, Peng & Shan, Zhenyu, 2021. "A high-accuracy switching loss model of SiC MOSFETs in a motor drive for electric vehicles," Applied Energy, Elsevier, vol. 291(C).
    7. Einolander, Johannes & Lahdelma, Risto, 2022. "Explicit demand response potential in electric vehicle charging networks: Event-based simulation based on the multivariate copula procedure," Energy, Elsevier, vol. 256(C).
    8. Zhao, Yang & Jiang, Ziyue & Chen, Xinyu & Liu, Peng & Peng, Tianduo & Shu, Zhan, 2023. "Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets," Energy, Elsevier, vol. 285(C).
    9. Jåstad, Eirik Ogner & Bolkesjø, Torjus Folsland, 2023. "Modelling emission and land-use impacts of altered bioenergy use in the future energy system," Energy, Elsevier, vol. 265(C).
    10. Bergaentzle, Claire & Gunkel, Philipp Andreas, 2022. "Cross-sector flexibility, storage investment and the integration of renewables: Capturing the impacts of grid tariffs," Energy Policy, Elsevier, vol. 164(C).
    11. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    12. Gunkel, Philipp Andreas & Kachirayil, Febin & Bergaentzlé, Claire-Marie & McKenna, Russell & Keles, Dogan & Jacobsen, Henrik Klinge, 2023. "Uniform taxation of electricity: incentives for flexibility and cost redistribution among household categories," Energy Economics, Elsevier, vol. 127(PB).
    13. Jåstad, Eirik Ogner & Bolkesjø, Torjus Folsland, 2023. "Offshore wind power market values in the North Sea – A probabilistic approach," Energy, Elsevier, vol. 267(C).
    14. Powell, Siobhan & Cezar, Gustavo Vianna & Rajagopal, Ram, 2022. "Scalable probabilistic estimates of electric vehicle charging given observed driver behavior," Applied Energy, Elsevier, vol. 309(C).
    15. Daryabari, Mohamad K. & Keypour, Reza & Golmohamadi, Hessam, 2020. "Stochastic energy management of responsive plug-in electric vehicles characterizing parking lot aggregators," Applied Energy, Elsevier, vol. 279(C).
    16. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    17. M. Zulfiqar & Nahar F. Alshammari & M. B. Rasheed, 2023. "Reinforcement Learning-Enabled Electric Vehicle Load Forecasting for Grid Energy Management," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    18. Yuan, Hong & Ma, Minda & Zhou, Nan & Xie, Hui & Ma, Zhili & Xiang, Xiwang & Ma, Xin, 2024. "Battery electric vehicle charging in China: Energy demand and emissions trends in the 2020s," Applied Energy, Elsevier, vol. 365(C).
    19. Pokpong Prakobkaew & Somporn Sirisumrannukul, 2022. "Practical Grid-Based Spatial Estimation of Number of Electric Vehicles and Public Chargers for Country-Level Planning with Utilization of GIS Data," Energies, MDPI, vol. 15(11), pages 1-19, May.
    20. Valkering, Pieter & Moglianesi, Andrea & Godon, Louis & Duerinck, Jan & Huber, Dominik & Costa, Daniele, 2023. "Representing decentralized generation and local energy use flexibility in an energy system optimization model," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:303:y:2021:i:c:s0306261921010187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.