IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v141y2023icp291-304.html
   My bibliography  Save this article

Patterns, no patterns, that is the question: Quantifying users’ electric vehicle charging

Author

Listed:
  • Khaleghikarahrodi, Mehrsa
  • Macht, Gretchen A.

Abstract

Policymakers have structured legislation and set targets to increase the adoption of electric vehicles and the deployment of charging stations. As questions arise on how to expand the electric vehicle infrastructure, advanced computational models are attempting to quantify the future placement of charging stations. These models, however, do not necessarily incorporate the variability of user behavior as a subgroup of consumer behavior, as this information is not well-understood. This paper explores a state-wide network of 68 public charging stations' data representing 58,273 charging events to determine users' charging patterns. The methodological approach applied k-means clustering with Minkowski embedded distances to distinguish unique charging subgroups from 608 frequent users. The results indicate four user types: convenient (n = 319, 53%), gradual (n = 147, 24%), anxious (n = 104, 17%), and urgent (n = 38, 6%). Quantifying these users’ unique patterns supports the human variability knowledge required for more comprehensive and holistic models of electric vehicle charging station placement. More broadly, these results support the user-centric design of public charging infrastructure, which assists in reducing the electric vehicle adoption threshold in the long run and facilitating the transition to a low-carbon, sustainable transportation system.

Suggested Citation

  • Khaleghikarahrodi, Mehrsa & Macht, Gretchen A., 2023. "Patterns, no patterns, that is the question: Quantifying users’ electric vehicle charging," Transport Policy, Elsevier, vol. 141(C), pages 291-304.
  • Handle: RePEc:eee:trapol:v:141:y:2023:i:c:p:291-304
    DOI: 10.1016/j.tranpol.2023.07.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X23002007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2023.07.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Franke, Thomas & Krems, Josef F., 2013. "Interacting with limited mobility resources: Psychological range levels in electric vehicle use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 109-122.
    2. Semen Uimonen & Matti Lehtonen, 2020. "Simulation of Electric Vehicle Charging Stations Load Profiles in Office Buildings Based on Occupancy Data," Energies, MDPI, vol. 13(21), pages 1-16, October.
    3. Björnsson, Lars-Henrik & Karlsson, Sten, 2015. "Plug-in hybrid electric vehicles: How individual movement patterns affect battery requirements, the potential to replace conventional fuels, and economic viability," Applied Energy, Elsevier, vol. 143(C), pages 336-347.
    4. He, Sylvia Y. & Kuo, Yong-Hong & Sun, Ka Kit, 2022. "The spatial planning of public electric vehicle charging infrastructure in a high-density city using a contextualised location-allocation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 21-44.
    5. Zhu, Zhi-Hong & Gao, Zi-You & Zheng, Jian-Feng & Du, Hao-Ming, 2016. "Charging station location problem of plug-in electric vehicles," Journal of Transport Geography, Elsevier, vol. 52(C), pages 11-22.
    6. Alwesabi, Yaseen & Liu, Zhaocai & Kwon, Soongeol & Wang, Yong, 2021. "A novel integration of scheduling and dynamic wireless charging planning models of battery electric buses," Energy, Elsevier, vol. 230(C).
    7. Baek Jung Kim & Vishal Singh & Russell S. Winer, 2017. "The Pareto rule for frequently purchased packaged goods: an empirical generalization," Marketing Letters, Springer, vol. 28(4), pages 491-507, December.
    8. Ali Seyed Shirkhorshidi & Saeed Aghabozorgi & Teh Ying Wah, 2015. "A Comparison Study on Similarity and Dissimilarity Measures in Clustering Continuous Data," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-20, December.
    9. Azadfar, Elham & Sreeram, Victor & Harries, David, 2015. "The investigation of the major factors influencing plug-in electric vehicle driving patterns and charging behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1065-1076.
    10. Michael Hardinghaus & Christian Seidel & John E. Anderson, 2019. "Estimating Public Charging Demand of Electric Vehicles," Sustainability, MDPI, vol. 11(21), pages 1-22, October.
    11. Neaimeh, Myriam & Wardle, Robin & Jenkins, Andrew M. & Yi, Jialiang & Hill, Graeme & Lyons, Padraig F. & Hübner, Yvonne & Blythe, Phil T. & Taylor, Phil C., 2015. "A probabilistic approach to combining smart meter and electric vehicle charging data to investigate distribution network impacts," Applied Energy, Elsevier, vol. 157(C), pages 688-698.
    12. He, Fang & Wu, Di & Yin, Yafeng & Guan, Yongpei, 2013. "Optimal deployment of public charging stations for plug-in hybrid electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 87-101.
    13. Erik Brynjolfsson & Yu (Jeffrey) Hu & Duncan Simester, 2011. "Goodbye Pareto Principle, Hello Long Tail: The Effect of Search Costs on the Concentration of Product Sales," Management Science, INFORMS, vol. 57(8), pages 1373-1386, August.
    14. Ensslen, Axel & Schücking, Maximilian & Jochem, Patrick & Steffens, Henning & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Empirical carbon dioxide emissions of electric vehicles in a French-German commuter fleet test," MPRA Paper 91600, University Library of Munich, Germany.
    15. Davidov, Sreten, 2020. "Optimal charging infrastructure planning based on a charging convenience buffer," Energy, Elsevier, vol. 192(C).
    16. Speidel, Stuart & Bräunl, Thomas, 2014. "Driving and charging patterns of electric vehicles for energy usage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 97-110.
    17. Jun Tang, 2016. "A survey of R&D of intelligent STR system based on behavior pattern recognition in China," Journal of Money Laundering Control, Emerald Group Publishing Limited, vol. 19(2), pages 109-121, May.
    18. Morrissey, Patrick & Weldon, Peter & O’Mahony, Margaret, 2016. "Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour," Energy Policy, Elsevier, vol. 89(C), pages 257-270.
    19. Wolbertus, Rick & van den Hoed, Robert & Kroesen, Maarten & Chorus, Caspar, 2021. "Charging infrastructure roll-out strategies for large scale introduction of electric vehicles in urban areas: An agent-based simulation study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 262-285.
    20. Wujin Chu & Hyunsik Kim & Meeja Im, 2021. "Patience and the adoption of electric vehicles: an application of the dual-self model," Journal of Business Economics, Springer, vol. 91(6), pages 851-866, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
    2. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M. & Jenkins, Nick & Carroll, Steve & Barker, Myles, 2016. "A data-driven approach for characterising the charging demand of electric vehicles: A UK case study," Applied Energy, Elsevier, vol. 162(C), pages 763-771.
    3. Calearo, Lisa & Marinelli, Mattia & Ziras, Charalampos, 2021. "A review of data sources for electric vehicle integration studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    5. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    6. Yang, Woosuk, 2018. "A user-choice model for locating congested fast charging stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 189-213.
    7. He, Sylvia Y. & Kuo, Yong-Hong & Sun, Ka Kit, 2022. "The spatial planning of public electric vehicle charging infrastructure in a high-density city using a contextualised location-allocation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 21-44.
    8. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    9. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
    10. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    11. Pichamon Keawthong & Veera Muangsin & Chupun Gowanit, 2022. "Location Selection of Charging Stations for Electric Taxis: A Bangkok Case," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    12. Chengxiang Zhuge & Chunfu Shao & Xia Li, 2019. "Empirical Analysis of Parking Behaviour of Conventional and Electric Vehicles for Parking Modelling: A Case Study of Beijing, China," Energies, MDPI, vol. 12(16), pages 1-21, August.
    13. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    14. Yıldız, Barış & Olcaytu, Evren & Şen, Ahmet, 2019. "The urban recharging infrastructure design problem with stochastic demands and capacitated charging stations," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 22-44.
    15. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    16. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2017. "When do you charge your electric vehicle? A stated adaptation approach," Energy Policy, Elsevier, vol. 108(C), pages 565-573.
    17. Wang, Wanying & Zhang, Qiang & Peng, Zhanglin & Shao, Zhen & Li, Xuefang, 2020. "An empirical evaluation of different usage pattern between car-sharing battery electric vehicles and private ones," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 115-129.
    18. Harbrecht, Alexander & McKenna, Russell & Fischer, David & Fichtner, Wolf, 2018. "Behavior-oriented modeling of electric vehicle load profiles: A stochastic simulation model considering different household characteristics, charging decisions and locations," Working Paper Series in Production and Energy 29, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    19. Maria-Simona Răboacă & Irina Băncescu & Vasile Preda & Nicu Bizon, 2020. "An Optimization Model for the Temporary Locations of Mobile Charging Stations," Mathematics, MDPI, vol. 8(3), pages 1-20, March.
    20. Alegre, Susana & Míguez, Juan V. & Carpio, José, 2017. "Modelling of electric and parallel-hybrid electric vehicle using Matlab/Simulink environment and planning of charging stations through a geographic information system and genetic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1020-1027.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:141:y:2023:i:c:p:291-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.