IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipcs0360544222027815.html
   My bibliography  Save this article

Cost-oriented optimization of the location and capacity of charging stations for the electric Robotaxi fleet

Author

Listed:
  • Wang, Ning
  • Tian, Hangqi
  • Wu, Huahua
  • Liu, Qiaoqian
  • Luan, Jie
  • Li, Yuan

Abstract

Large-scale adoption of Robotaxi requires a comprehensive charging infrastructure as a guarantee, but the problems of insufficient capacity, low utilization, and unreasonable deployment of electric vehicle charging stations (EVCSs) are still common. In this context, this study proposed a multi-stage optimization strategy consisting of fleet sizing, charging demand simulation, model construction and solution to achieve the location and capacity optimization of EVCSs for the electric Robotaxi fleet. In stage one, a vehicle shareable network model based on graph theory was developed to determine the minimum Robotaxi fleet size required to adequately meet user travel demand, which was solved using the Hopcroft-Karp algorithm. In stage two, the specific spatio-temporal distribution of fleet charging demand was obtained by Monte Carlo simulation, considering the decision-making characteristics of Robotaxi operation and charging process. In stage three, a charging station location and capacity optimization model was established with the objective of minimizing the comprehensive costs, and an improved particle swarm optimization algorithm applying genetic operators to improve the population diversity was proposed. Finally, the effectiveness of the proposed model and algorithm was analyzed and discussed based on a case study using the real passenger order and geographic data from the city of Chengdu, China.

Suggested Citation

  • Wang, Ning & Tian, Hangqi & Wu, Huahua & Liu, Qiaoqian & Luan, Jie & Li, Yuan, 2023. "Cost-oriented optimization of the location and capacity of charging stations for the electric Robotaxi fleet," Energy, Elsevier, vol. 263(PC).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027815
    DOI: 10.1016/j.energy.2022.125895
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222027815
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125895?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yajun Zhang & Jie Deng & Kangkang Zhu & Yongqiang Tao & Xiaolin Liu & Ligang Cui, 2021. "Location and Expansion of Electric Bus Charging Stations Based on Gridded Affinity Propagation Clustering and a Sequential Expansion Rule," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    2. Schiffer, Maximilian & Walther, Grit, 2017. "The electric location routing problem with time windows and partial recharging," European Journal of Operational Research, Elsevier, vol. 260(3), pages 995-1013.
    3. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    4. Guozhong Liu & Li Kang & Zeyu Luan & Jing Qiu & Fenglei Zheng, 2019. "Charging Station and Power Network Planning for Integrated Electric Vehicles (EVs)," Energies, MDPI, vol. 12(13), pages 1-22, July.
    5. M. M. Vazifeh & P. Santi & G. Resta & S. H. Strogatz & C. Ratti, 2018. "Addressing the minimum fleet problem in on-demand urban mobility," Nature, Nature, vol. 557(7706), pages 534-538, May.
    6. Hassan S. Hayajneh & Xuewei Zhang, 2019. "Evaluation of Electric Vehicle Charging Station Network Planning via a Co-Evolution Approach," Energies, MDPI, vol. 13(1), pages 1-11, December.
    7. Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
    8. Guo, Sen & Zhao, Huiru, 2015. "Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective," Applied Energy, Elsevier, vol. 158(C), pages 390-402.
    9. Wolbertus, Rick & Kroesen, Maarten & van den Hoed, Robert & Chorus, Caspar, 2018. "Fully charged: An empirical study into the factors that influence connection times at EV-charging stations," Energy Policy, Elsevier, vol. 123(C), pages 1-7.
    10. Sai Shao & Wei Guan & Bin Ran & Zhengbing He & Jun Bi, 2017. "Electric Vehicle Routing Problem with Charging Time and Variable Travel Time," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-13, January.
    11. Yuping Lin & Kai Zhang & Zuo-Jun Max Shen & Lixin Miao, 2019. "Charging Network Planning for Electric Bus Cities: A Case Study of Shenzhen, China," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    12. Asamer, Johannes & Reinthaler, Martin & Ruthmair, Mario & Straub, Markus & Puchinger, Jakob, 2016. "Optimizing charging station locations for urban taxi providers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 233-246.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jiawei & Guo, Qinglai & Sun, Hongbin & Chen, Min, 2023. "Collaborative optimization of logistics and electricity for the mobile charging service system," Applied Energy, Elsevier, vol. 336(C).
    2. Pourvaziri, H. & Sarhadi, H. & Azad, N. & Afshari, H. & Taghavi, M., 2024. "Planning of electric vehicle charging stations: An integrated deep learning and queueing theory approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    3. Cao, Jianing & Han, Yuhang & Pan, Nan & Zhang, Jingcheng & Yang, Junwei, 2024. "A data-driven approach to urban charging facility expansion based on bi-level optimization: A case study in a Chinese city," Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamza El Hafdaoui & Hamza El Alaoui & Salma Mahidat & Zakaria El Harmouzi & Ahmed Khallaayoun, 2023. "Impact of Hot Arid Climate on Optimal Placement of Electric Vehicle Charging Stations," Energies, MDPI, vol. 16(2), pages 1-19, January.
    2. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    3. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    4. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    5. Panagiotis Skaloumpakas & Evangelos Spiliotis & Elissaios Sarmas & Alexios Lekidis & George Stravodimos & Dimitris Sarigiannis & Ioanna Makarouni & Vangelis Marinakis & John Psarras, 2022. "A Multi-Criteria Approach for Optimizing the Placement of Electric Vehicle Charging Stations in Highways," Energies, MDPI, vol. 15(24), pages 1-13, December.
    6. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    7. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    8. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    9. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    10. Dönmez, Sercan & Koç, Çağrı & Altıparmak, Fulya, 2022. "The mixed fleet vehicle routing problem with partial recharging by multiple chargers: Mathematical model and adaptive large neighborhood search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    11. Wang, Hua & Zhao, De & Cai, Yutong & Meng, Qiang & Ong, Ghim Ping, 2021. "Taxi trajectory data based fast-charging facility planning for urban electric taxi systems," Applied Energy, Elsevier, vol. 286(C).
    12. Wang, Mengtong & Miao, Lixin & Zhang, Canrong, 2021. "A branch-and-price algorithm for a green location routing problem with multi-type charging infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    13. Hatem Abdelaty & Ahmed Foda & Moataz Mohamed, 2023. "The Robustness of Battery Electric Bus Transit Networks under Charging Infrastructure Disruptions," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    14. Bong-Gi Choi & Byeong-Chan Oh & Sungyun Choi & Sung-Yul Kim, 2020. "Selecting Locations of Electric Vehicle Charging Stations Based on the Traffic Load Eliminating Method," Energies, MDPI, vol. 13(7), pages 1-20, April.
    15. Jun, Sungbum & Lee, Seokcheon & Yih, Yuehwern, 2021. "Pickup and delivery problem with recharging for material handling systems utilising autonomous mobile robots," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1153-1168.
    16. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.
    17. Yu Feng & Xiaochun Lu, 2021. "Construction Planning and Operation of Battery Swapping Stations for Electric Vehicles: A Literature Review," Energies, MDPI, vol. 14(24), pages 1-19, December.
    18. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.
    19. Hui Zhao & Jing Gao & Xian Cheng, 2023. "Electric Vehicle Solar Charging Station Siting Study Based on GIS and Multi-Criteria Decision-Making: A Case Study of China," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    20. Jiehong Lou & Xingchi Shen & Deb A. Niemeier & Nathan Hultman, 2024. "Income and racial disparity in household publicly available electric vehicle infrastructure accessibility," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.