IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5700-d438067.html
   My bibliography  Save this article

Simulation of Electric Vehicle Charging Stations Load Profiles in Office Buildings Based on Occupancy Data

Author

Listed:
  • Semen Uimonen

    (School of Electrical Engineering, Aalto University, P.O. Box 15500, 00076 Espoo, Finland)

  • Matti Lehtonen

    (School of Electrical Engineering, Aalto University, P.O. Box 15500, 00076 Espoo, Finland)

Abstract

Transportation vehicles are a large contributor of the carbon dioxide emissions to the atmosphere. Electric Vehicles (EVs) are a promising solution to reduce the CO 2 emissions which, however, requires the right electric power production mix for the largest impact. The increase in the electric power consumption caused by the EV charging demand could be matched by the growing share of Renewable Energy Sources (RES) in the power production. EVs are becoming a popular sustainable mean of transportation and the expansion of EV units due to the stochastic nature of charging behavior and increasing share of RES creates additional challenges to the stability in the power systems. Modeling of EV charging fleets allows understanding EV charging capacity and demand response (DR) potential of EV in the power systems. This article focuses on modeling of daily EV charging profiles for buildings with various number of chargers and daily events. The article presents a modeling approach based on the charger occupancy data from the local charging sites. The approach allows one to simulate load profiles and to find how many chargers are necessary to suffice the approximate demand of EV charging from the traffic characteristics, such as arrival time, duration of charging, and maximum charging power. Additionally, to better understand the potential impact of demand response, the modeling approach allows one to compare charging profiles, while adjusting the maximum power consumption of chargers.

Suggested Citation

  • Semen Uimonen & Matti Lehtonen, 2020. "Simulation of Electric Vehicle Charging Stations Load Profiles in Office Buildings Based on Occupancy Data," Energies, MDPI, vol. 13(21), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5700-:d:438067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5700/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andersson, S.-L. & Elofsson, A.K. & Galus, M.D. & Göransson, L. & Karlsson, S. & Johnsson, F. & Andersson, G., 2010. "Plug-in hybrid electric vehicles as regulating power providers: Case studies of Sweden and Germany," Energy Policy, Elsevier, vol. 38(6), pages 2751-2762, June.
    2. Zhixin Pan & Jianming Wang & Wenlong Liao & Haiwen Chen & Dong Yuan & Weiping Zhu & Xin Fang & Zhen Zhu, 2019. "Data-Driven EV Load Profiles Generation Using a Variational Auto-Encoder," Energies, MDPI, vol. 12(5), pages 1-15, March.
    3. Su, Wencong & Chow, Mo-Yuen, 2012. "Computational intelligence-based energy management for a large-scale PHEV/PEV enabled municipal parking deck," Applied Energy, Elsevier, vol. 96(C), pages 171-182.
    4. Paramonova, Svetlana & Thollander, Patrik & Ottosson, Mikael, 2015. "Quantifying the extended energy efficiency gap-evidence from Swedish electricity-intensive industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 472-483.
    5. García-Villalobos, J. & Zamora, I. & San Martín, J.I. & Asensio, F.J. & Aperribay, V., 2014. "Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 717-731.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nattavit Piamvilai & Somporn Sirisumrannukul, 2022. "Optimal Scheduling of Movable Electric Vehicle Loads Using Generation of Charging Event Matrices, Queuing Management, and Genetic Algorithm," Energies, MDPI, vol. 15(10), pages 1-26, May.
    2. Dominik Husarek & Vjekoslav Salapic & Simon Paulus & Michael Metzger & Stefan Niessen, 2021. "Modeling the Impact of Electric Vehicle Charging Infrastructure on Regional Energy Systems: Fields of Action for an Improved e-Mobility Integration," Energies, MDPI, vol. 14(23), pages 1-27, November.
    3. Pedro Faria & Zita Vale, 2022. "Realistic Load Modeling for Efficient Consumption Management Using Real-Time Simulation and Power Hardware-in-the-Loop," Energies, MDPI, vol. 16(1), pages 1-15, December.
    4. Christopher Hecht & Jan Figgener & Xiaohui Li & Lei Zhang & Dirk Uwe Sauer, 2023. "Standard Load Profiles for Electric Vehicle Charging Stations in Germany Based on Representative, Empirical Data," Energies, MDPI, vol. 16(6), pages 1-21, March.
    5. Khaleghikarahrodi, Mehrsa & Macht, Gretchen A., 2023. "Patterns, no patterns, that is the question: Quantifying users’ electric vehicle charging," Transport Policy, Elsevier, vol. 141(C), pages 291-304.
    6. Pablo Tamay & Esteban Inga, 2022. "Charging Infrastructure for Electric Vehicles Considering Their Integration into the Smart Grid," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    7. Pramote Jaruwatanachai & Yod Sukamongkol & Taweesak Samanchuen, 2023. "Predicting and Managing EV Charging Demand on Electrical Grids: A Simulation-Based Approach," Energies, MDPI, vol. 16(8), pages 1-22, April.
    8. Seyed Mahdi Miraftabzadeh & Michela Longo & Federica Foiadelli, 2021. "Estimation Model of Total Energy Consumptions of Electrical Vehicles under Different Driving Conditions," Energies, MDPI, vol. 14(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Yanchong & Wang, Yubin & Yang, Qiang, 2023. "Two-phase operation for coordinated charging of electric vehicles in a market environment: From electric vehicle aggregators’ perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    2. Khemakhem, Siwar & Rekik, Mouna & Krichen, Lotfi, 2017. "A flexible control strategy of plug-in electric vehicles operating in seven modes for smoothing load power curves in smart grid," Energy, Elsevier, vol. 118(C), pages 197-208.
    3. Heilmann, C. & Friedl, G., 2021. "Factors influencing the economic success of grid-to-vehicle and vehicle-to-grid applications—A review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    5. Olsthoorn, Mark & Schleich, Joachim & Hirzel, Simon, 2017. "Adoption of Energy Efficiency Measures for Non-residential Buildings: Technological and Organizational Heterogeneity in the Trade, Commerce and Services Sector," Ecological Economics, Elsevier, vol. 136(C), pages 240-254.
    6. Juul, Nina, 2012. "Battery prices and capacity sensitivity: Electric drive vehicles," Energy, Elsevier, vol. 47(1), pages 403-410.
    7. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    8. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    9. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    10. Muhammad Kashif Rafique & Zunaib Maqsood Haider & Khawaja Khalid Mehmood & Muhammad Saeed Uz Zaman & Muhammad Irfan & Saad Ullah Khan & Chul-Hwan Kim, 2018. "Optimal Scheduling of Hybrid Energy Resources for a Smart Home," Energies, MDPI, vol. 11(11), pages 1-19, November.
    11. Silva, Walquiria N. & Bandória, Luís H.T. & Dias, Bruno H. & de Almeida, Madson C. & de Oliveira, Leonardo W., 2023. "Generating realistic load profiles in smart grids: An approach based on nonlinear independent component estimation (NICE) and convolutional layers," Applied Energy, Elsevier, vol. 351(C).
    12. Khaled Shuaib & Ezedin Barka & Juhar Ahmed Abdella & Farag Sallabi & Mohammed Abdel-Hafez & Ala Al-Fuqaha, 2017. "Secure Plug-in Electric Vehicle (PEV) Charging in a Smart Grid Network," Energies, MDPI, vol. 10(7), pages 1-23, July.
    13. César García Veloso & Kalle Rauma & Julián Fernández & Christian Rehtanz, 2020. "Real-Time Control of Plug-in Electric Vehicles for Congestion Management of Radial LV Networks: A Comparison of Implementations," Energies, MDPI, vol. 13(16), pages 1-19, August.
    14. Rahman, Imran & Vasant, Pandian M. & Singh, Balbir Singh Mahinder & Abdullah-Al-Wadud, M. & Adnan, Nadia, 2016. "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1039-1047.
    15. Galus, Matthias D. & Zima, Marek & Andersson, Göran, 2010. "On integration of plug-in hybrid electric vehicles into existing power system structures," Energy Policy, Elsevier, vol. 38(11), pages 6736-6745, November.
    16. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
    17. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    18. Lawrence, Akvile & Karlsson, Magnus & Nehler, Therese & Thollander, Patrik, 2019. "Effects of monetary investment, payback time and firm characteristics on electricity saving in energy-intensive industry," Applied Energy, Elsevier, vol. 240(C), pages 499-512.
    19. Gerald Broneske & David Wozabal, 2017. "How Do Contract Parameters Influence the Economics of Vehicle-to-Grid?," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 150-164, February.
    20. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5700-:d:438067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.