IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p731-d1053661.html
   My bibliography  Save this article

Optimal Performance of Photovoltaic-Powered Water Pumping System

Author

Listed:
  • Mohammad R. Altimania

    (Electrical Engineering Department, University of Tabuk, Tabuk 47512, Saudi Arabia)

  • Nadia A. Elsonbaty

    (Electrical Power & Machines Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

  • Mohamed A. Enany

    (Electrical Power & Machines Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

  • Mahmoud M. Gamil

    (Electrical Power & Machines Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

  • Saeed Alzahrani

    (Electrical Engineering Department, University of Tabuk, Tabuk 47512, Saudi Arabia)

  • Musfer Hasan Alraddadi

    (Electrical & Electronics Engineering Technology Department, Royal Commission Yanbu Colleges & Institutes, Yanbu Industrial City, Yanbu Al Sinaiyah 46452, Saudi Arabia)

  • Ruwaybih Alsulami

    (Department of Electrical Engineering, Umm Al-Qura University, Mecca 24382, Saudi Arabia)

  • Mohammad Alhartomi

    (Electrical Engineering Department, University of Tabuk, Tabuk 47512, Saudi Arabia)

  • Moahd Alghuson

    (Industrial Engineering Department, University of Tabuk, Tabuk 47512, Saudi Arabia)

  • Fares Alatawi

    (Electrical Engineering Department, University of Tabuk, Tabuk 47512, Saudi Arabia)

  • Mohamed I. Mosaad

    (Electrical Engineering Department, Faculty of Engineering, Damietta University, Damietta 34511, Egypt)

Abstract

Photovoltaic (PV) systems are one of the promising renewable energy sources that have many industrial applications; one of them is water pumping systems. This paper proposes a new application of a PV system for water pumping using a three-phase induction motor while maximizing the daily quantity of water pumped while considering maximizing both the efficiency of the three-phase induction motor and the harvested power from the PV system. This harvesting is performed through maximum power point tracking (MPPT) of the PV system. The proposed technique is applied to a PV-powered 3 phase induction motor water pumping system (PV-IMWPS) at any operating point. Firstly, an analytical approach is offered to find the optimal firing pattern of the inverter (V-F) for the motor through optimal flux control. This flux control is presented for maximizing the pump flow rate while achieving MPPT for the PV system and maximum efficiency of the motor at any irradiance and temperature. The provided analytical optimal flux control is compared to a fixed flux one to ascertain its effectiveness. The obtained feature of the suggested optimal flux control validates a significant improvement in the system performances, including the daily pumped quantity, motor power factor, and system efficiency. Then converting the data from the first analytical step into an intelligent approach using an adaptive neuro-fuzzy inference system (ANFIS). This ANFIS is trained offline with the input (irradiance and temperature) while the output is the inverter pattern to enhance the performance of the proposed pumping system, PV-IMWPS.

Suggested Citation

  • Mohammad R. Altimania & Nadia A. Elsonbaty & Mohamed A. Enany & Mahmoud M. Gamil & Saeed Alzahrani & Musfer Hasan Alraddadi & Ruwaybih Alsulami & Mohammad Alhartomi & Moahd Alghuson & Fares Alatawi & , 2023. "Optimal Performance of Photovoltaic-Powered Water Pumping System," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:731-:d:1053661
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amjad Ali & K. Almutairi & Muhammad Zeeshan Malik & Kashif Irshad & Vineet Tirth & Salem Algarni & Md. Hasan Zahir & Saiful Islam & Md Shafiullah & Neeraj Kumar Shukla, 2020. "Review of Online and Soft Computing Maximum Power Point Tracking Techniques under Non-Uniform Solar Irradiation Conditions," Energies, MDPI, vol. 13(12), pages 1-37, June.
    2. Salam, Zainal & Ahmed, Jubaer & Merugu, Benny S., 2013. "The application of soft computing methods for MPPT of PV system: A technological and status review," Applied Energy, Elsevier, vol. 107(C), pages 135-148.
    3. Mohamed I. Mosaad & Ahmed Abu-Siada & Mohamed M. Ismaiel & Hani Albalawi & Ahmed Fahmy, 2021. "Enhancing the Fault Ride-through Capability of a DFIG-WECS Using a High-Temperature Superconducting Coil," Energies, MDPI, vol. 14(19), pages 1-18, October.
    4. Haddad, S. & Benghanem, M. & Mellit, A. & Daffallah, K.O., 2015. "ANNs-based modeling and prediction of hourly flow rate of a photovoltaic water pumping system: Experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 635-643.
    5. Atlam, Ozcan & Kolhe, Mohan, 2013. "Performance evaluation of directly photovoltaic powered DC PM (direct current permanent magnet) motor – propeller thrust system," Energy, Elsevier, vol. 57(C), pages 692-698.
    6. Hamid Chojaa & Aziz Derouich & Mohammed Taoussi & Seif Eddine Chehaidia & Othmane Zamzoum & Mohamed I. Mosaad & Ayman Alhejji & Mourad Yessef, 2022. "Nonlinear Control Strategies for Enhancing the Performance of DFIG-Based WECS under a Real Wind Profile," Energies, MDPI, vol. 15(18), pages 1-23, September.
    7. Corrêa, Tomás Perpétuo & Seleme, Seleme Isaac & Silva, Selênio Rocha, 2012. "Efficiency optimization in stand-alone photovoltaic pumping system," Renewable Energy, Elsevier, vol. 41(C), pages 220-226.
    8. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    9. Su, Chang & Urban, Frauke, 2021. "Circular economy for clean energy transitions: A new opportunity under the COVID-19 pandemic," Applied Energy, Elsevier, vol. 289(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    2. Chandel, S.S. & Nagaraju Naik, M. & Chandel, Rahul, 2015. "Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1084-1099.
    3. Langarita, Raquel & Sánchez Chóliz, Julio & Sarasa, Cristina & Duarte, Rosa & Jiménez, Sofía, 2017. "Electricity costs in irrigated agriculture: A case study for an irrigation scheme in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1008-1019.
    4. Amjad Ali & Kashif Irshad & Mohammad Farhan Khan & Md Moinul Hossain & Ibrahim N. A. Al-Duais & Muhammad Zeeshan Malik, 2021. "Artificial Intelligence and Bio-Inspired Soft Computing-Based Maximum Power Plant Tracking for a Solar Photovoltaic System under Non-Uniform Solar Irradiance Shading Conditions—A Review," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    5. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    6. Hina Gohar Ali & Ramon Vilanova Arbos, 2020. "Chattering Free Adaptive Sliding Mode Controller for Photovoltaic Panels with Maximum Power Point Tracking," Energies, MDPI, vol. 13(21), pages 1-18, October.
    7. Sontake, Vimal Chand & Kalamkar, Vilas R., 2016. "Solar photovoltaic water pumping system - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1038-1067.
    8. Hossain, Md. Faruque, 2017. "Green science: Independent building technology to mitigate energy, environment, and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 695-705.
    9. Kwan, Trevor Hocksun & Wu, Xiaofeng, 2017. "The Lock-On Mechanism MPPT algorithm as applied to the hybrid photovoltaic cell and thermoelectric generator system," Applied Energy, Elsevier, vol. 204(C), pages 873-886.
    10. Wang, Jian-jun & Deng, Yu-cong & Sun, Wen-biao & Zheng, Xiao-bin & Cui, Zheng, 2023. "Maximum power point tracking method based on impedance matching for a micro hydropower generator," Applied Energy, Elsevier, vol. 340(C).
    11. Yongqin Niu, 2024. "RETRACTED ARTICLE: Toward a greener energy transition: examining the effects of circular economy and carbon footprint for sustainable development," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-22, April.
    12. Mehdi Tavakkoli & Jafar Adabi & Sasan Zabihi & Radu Godina & Edris Pouresmaeil, 2018. "Reserve Allocation of Photovoltaic Systems to Improve Frequency Stability in Hybrid Power Systems," Energies, MDPI, vol. 11(10), pages 1-19, September.
    13. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    14. Rubio-Aliaga, Alvaro & García-Cascales, M. Socorro & Sánchez-Lozano, Juan Miguel & Molina-Garcia, Angel, 2021. "MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example," Renewable Energy, Elsevier, vol. 163(C), pages 213-224.
    15. Jacek Kusznier, 2023. "Influence of Environmental Factors on the Intelligent Management of Photovoltaic and Wind Sections in a Hybrid Power Plant," Energies, MDPI, vol. 16(4), pages 1-15, February.
    16. Andrés Tobón & Julián Peláez-Restrepo & Juan P. Villegas-Ceballos & Sergio Ignacio Serna-Garcés & Jorge Herrera & Asier Ibeas, 2017. "Maximum Power Point Tracking of Photovoltaic Panels by Using Improved Pattern Search Methods," Energies, MDPI, vol. 10(9), pages 1-15, September.
    17. Yugang He & Ziqian Zhang, 2022. "Energy and Economic Effects of the COVID-19 Pandemic: Evidence from OECD Countries," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    18. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    19. Zi, Dan & Wang, Fujun & Wang, Chaoyue & Huang, Congbin & Shen, Lian, 2021. "Investigation on the air-core vortex in a vertical hydraulic intake system," Renewable Energy, Elsevier, vol. 177(C), pages 1333-1345.
    20. Abbas, Khizar & Han, Mengyao & Xu, Deyi & Butt, Khalid Manzoor & Baz, Khan & Cheng, Jinhua & Zhu, Yongguang & Hussain, Sanwal, 2024. "Exploring synergistic and individual causal effects of rare earth elements and renewable energy on multidimensional economic complexity for sustainable economic development," Applied Energy, Elsevier, vol. 364(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:731-:d:1053661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.