IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8092206.html
   My bibliography  Save this article

Observer-Based Sliding Mode Load Frequency Control of Power Systems under Deception Attack

Author

Listed:
  • Siwei Qiao
  • Xinghua Liu
  • Gaoxi Xiao
  • Shuzhi Sam Ge
  • Chih-Chiang Chen

Abstract

This study investigates the observer-based sliding mode load frequency control for multiarea interconnected power systems under deception attack. By introducing the observer and combining it with the system state equation, the expression of the system error is obtained. A sliding mode surface is proposed to make sure the state of the systems to be stable. Then, the state equation of the system under sliding mode control is derived. The asymptotic stability of the whole system is proved by using the linear matrix inequality (LMI) technique and Lyapunov stability theory. Furthermore, a sliding mode control law is proposed to ensure that the attacked power system can reach a stable position. Numerical simulation results are presented to support the correctness of the results.

Suggested Citation

  • Siwei Qiao & Xinghua Liu & Gaoxi Xiao & Shuzhi Sam Ge & Chih-Chiang Chen, 2021. "Observer-Based Sliding Mode Load Frequency Control of Power Systems under Deception Attack," Complexity, Hindawi, vol. 2021, pages 1-11, October.
  • Handle: RePEc:hin:complx:8092206
    DOI: 10.1155/2021/8092206
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/8092206.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/8092206.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/8092206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    2. Dong Zhao & Shuyan Sun & Ardashir Mohammadzadeh & Amir Mosavi, 2022. "Adaptive Intelligent Model Predictive Control for Microgrid Load Frequency," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    3. Xinghua Liu & Siwei Qiao & Zhiwei Liu, 2023. "A Survey on Load Frequency Control of Multi-Area Power Systems: Recent Challenges and Strategies," Energies, MDPI, vol. 16(5), pages 1-22, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8092206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.