IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p9943-d1521114.html
   My bibliography  Save this article

Bayesian-Neural-Network-Based Approach for Probabilistic Prediction of Building-Energy Demands

Author

Listed:
  • Akash Mahajan

    (Department of Computer and Information Science, College of Engineering and Computer Science, University of Michigan-Dearborn, Dearborn, MI 48128, USA)

  • Srijita Das

    (Department of Computer and Information Science, College of Engineering and Computer Science, University of Michigan-Dearborn, Dearborn, MI 48128, USA)

  • Wencong Su

    (Department of Electrical and Computer Engineering, College of Engineering and Computer Science, University of Michigan-Dearborn, Dearborn, MI 48128, USA)

  • Van-Hai Bui

    (Department of Electrical and Computer Engineering, College of Engineering and Computer Science, University of Michigan-Dearborn, Dearborn, MI 48128, USA)

Abstract

Reliable prediction of building-level energy demand is crucial for the building managers to optimize and regulate energy consumption. Conventional prediction models omit the uncertainties associated with demand over time; hence, they are mostly inaccurate and unreliable. In this study, a Bayesian neural network (BNN)-based probabilistic prediction model is proposed to tackle this challenge. By quantifying the uncertainty, BNNs provide probabilistic predictions that capture the variations in the energy demand. The proposed model is trained and evaluated on a subset of the building operations dataset of Lawrence Berkeley National Laboratory (LBNL), Berkeley, California, which includes diverse attributes related to climate and key building-performance indicators. We have performed thorough hyperparameter tuning and used fixed-horizon validation to evaluate trained models on various test data to assess generalization ability. To validate the results, quantile random forest (QRF) was used as a benchmark. This study compared BNN with LSTM, showing that BNN outperformed LSTM in uncertainty quantification.

Suggested Citation

  • Akash Mahajan & Srijita Das & Wencong Su & Van-Hai Bui, 2024. "Bayesian-Neural-Network-Based Approach for Probabilistic Prediction of Building-Energy Demands," Sustainability, MDPI, vol. 16(22), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9943-:d:1521114
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/9943/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/9943/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sekhar, Charan & Dahiya, Ratna, 2023. "Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand," Energy, Elsevier, vol. 268(C).
    2. Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
    3. Mobarak Abumohsen & Amani Yousef Owda & Majdi Owda, 2023. "Electrical Load Forecasting Using LSTM, GRU, and RNN Algorithms," Energies, MDPI, vol. 16(5), pages 1-31, February.
    4. Bassamzadeh, Nastaran & Ghanem, Roger, 2017. "Multiscale stochastic prediction of electricity demand in smart grids using Bayesian networks," Applied Energy, Elsevier, vol. 193(C), pages 369-380.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    2. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    3. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    4. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Biskas, Pandelis N. & Keranidis, Stratos D. & Symeonidis, Polychronis A. & Voulgarakis, Dimitrios K., 2022. "A novel system for providing explicit demand response from domestic natural gas boilers," Applied Energy, Elsevier, vol. 317(C).
    5. Omar Farhan Al-Hardanee & Hüseyin Demirel, 2024. "Hydropower Station Status Prediction Using RNN and LSTM Algorithms for Fault Detection," Energies, MDPI, vol. 17(22), pages 1-23, November.
    6. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    7. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    8. Di Wang & Sha Li & Xiaojin Fu, 2024. "Short-Term Power Load Forecasting Based on Secondary Cleaning and CNN-BILSTM-Attention," Energies, MDPI, vol. 17(16), pages 1-23, August.
    9. Zhiyong Li & Wenbin Wu & Yang Si & Xiaotao Chen, 2023. "Optimal Siting and Sizing of Hydrogen Production Modules in Distribution Networks with Photovoltaic Uncertainties," Energies, MDPI, vol. 16(22), pages 1-15, November.
    10. Jonathan Berrisch & Micha{l} Narajewski & Florian Ziel, 2022. "High-Resolution Peak Demand Estimation Using Generalized Additive Models and Deep Neural Networks," Papers 2203.03342, arXiv.org, revised Nov 2022.
    11. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
    12. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    13. Atif Maqbool Khan & Artur Wyrwa, 2024. "A Survey of Quantitative Techniques in Electricity Consumption—A Global Perspective," Energies, MDPI, vol. 17(19), pages 1-38, September.
    14. Xiaojin Xie & Kangyang Luo & Zhixiang Yin & Guoqiang Wang, 2021. "Nonlinear Combinational Dynamic Transmission Rate Model and Its Application in Global COVID-19 Epidemic Prediction and Analysis," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
    15. Wang, Deyun & Yue, Chenqiang & ElAmraoui, Adnen, 2021. "Multi-step-ahead electricity load forecasting using a novel hybrid architecture with decomposition-based error correction strategy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    16. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    17. Qiangqiang Cheng & Yiqi Yan & Shichao Liu & Chunsheng Yang & Hicham Chaoui & Mohamad Alzayed, 2020. "Particle Filter-Based Electricity Load Prediction for Grid-Connected Microgrid Day-Ahead Scheduling," Energies, MDPI, vol. 13(24), pages 1-15, December.
    18. Yang, Qing & Zhang, Lei & Zou, Shaohui & Zhang, Jinsuo, 2020. "Intertemporal optimization of the coal production capacity in China in terms of uncertain demand, economy, environment, and energy security," Energy Policy, Elsevier, vol. 139(C).
    19. Zhao, Xueyuan & Gao, Weijun & Qian, Fanyue & Ge, Jian, 2021. "Electricity cost comparison of dynamic pricing model based on load forecasting in home energy management system," Energy, Elsevier, vol. 229(C).
    20. Jieyi Kang & David Reiner, 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Working Papers EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9943-:d:1521114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.