IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p660-d1581178.html
   My bibliography  Save this article

Time Series Foundation Model for Improved Transformer Load Forecasting and Overload Detection

Author

Listed:
  • Yikai Hou

    (School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150000, China
    These authors contributed equally to this work.)

  • Chao Ma

    (School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150000, China
    These authors contributed equally to this work.)

  • Xiang Li

    (School of Cyberspace Security, Harbin Institute of Technology, Harbin 150000, China)

  • Yinggang Sun

    (School of Cyberspace Security, Harbin Institute of Technology, Harbin 150000, China)

  • Haining Yu

    (School of Cyberspace Security, Harbin Institute of Technology, Harbin 150000, China)

  • Zhou Fang

    (Heilongjiang Province Cyberspace Research Center, Harbin 150000, China)

Abstract

Simple load forecasting and overload prediction models, such as LSTM and XGBoost, are unable to handle the increasing amount of data in power systems. Recently, various foundation models (FMs) for time series analysis have been proposed, which can be scaled up for large time series variables and datasets across domains. However, the simple pre-training setting makes FMs unsuitable for complex downstream tasks. Effectively handling real-world tasks depends on additional data, i.e., covariates, and prior knowledge. Incorporating these through structural modifications to FMs is not feasible, as it would disrupt the pre-trained weights. To address this issue, this paper proposes a frequency domain mixer, i.e., FreqMixer, framework for enhancing the task-specific analytical capabilities of FMs. FreqMixer is an auxiliary network for the backbone FMs that takes covariates as input. It has the same number of layers as the backbone and communicates with it at each layer, allowing the incorporation of prior knowledge without altering the backbone’s structure. Through experiments, FreqMixer demonstrates high efficiency and performance, reducing MAPE by 23.65%, recall by 87%, and precision by 72% in transformer load forecasting during the Spring Festival while improving precision by 192.09% and accuracy by 14% in corresponding overload prediction, all while processing data from over 160 transformers with just 1M additional parameters.

Suggested Citation

  • Yikai Hou & Chao Ma & Xiang Li & Yinggang Sun & Haining Yu & Zhou Fang, 2025. "Time Series Foundation Model for Improved Transformer Load Forecasting and Overload Detection," Energies, MDPI, vol. 18(3), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:660-:d:1581178
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/660/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/660/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rout, Ullash K. & Voβ, Alfred & Singh, Anoop & Fahl, Ulrich & Blesl, Markus & Ó Gallachóir, Brian P., 2011. "Energy and emissions forecast of China over a long-time horizon," Energy, Elsevier, vol. 36(1), pages 1-11.
    2. Mobarak Abumohsen & Amani Yousef Owda & Majdi Owda, 2023. "Electrical Load Forecasting Using LSTM, GRU, and RNN Algorithms," Energies, MDPI, vol. 16(5), pages 1-31, February.
    3. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    4. Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
    5. Hao Ma & Peng Yang & Fei Wang & Xiaotian Wang & Di Yang & Bo Feng, 2023. "Short-Term Heavy Overload Forecasting of Public Transformers Based on Combined LSTM-XGBoost Model," Energies, MDPI, vol. 16(3), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Paulo Vitor B. & Villela, Saulo Moraes & Silva, Walquiria N. & Dias, Bruno H., 2023. "Residential energy consumption forecasting using deep learning models," Applied Energy, Elsevier, vol. 350(C).
    2. Semmelmann, Leo & Hertel, Matthias & Kircher, Kevin J. & Mikut, Ralf & Hagenmeyer, Veit & Weinhardt, Christof, 2024. "The impact of heat pumps on day-ahead energy community load forecasting," Applied Energy, Elsevier, vol. 368(C).
    3. Fan, Jingmin & Zhong, Mingwei & Guan, Yuanpeng & Yi, Siqi & Xu, Cancheng & Zhai, Yanpeng & Zhou, Yongwang, 2024. "An online long-term load forecasting method: Hierarchical highway network based on crisscross feature collaboration," Energy, Elsevier, vol. 299(C).
    4. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    5. Adom, Philip Kofi & Bekoe, William, 2012. "Conditional dynamic forecast of electrical energy consumption requirements in Ghana by 2020: A comparison of ARDL and PAM," Energy, Elsevier, vol. 44(1), pages 367-380.
    6. Meng, Ming & Niu, Dongxiao, 2011. "Modeling CO2 emissions from fossil fuel combustion using the logistic equation," Energy, Elsevier, vol. 36(5), pages 3355-3359.
    7. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    8. Geng, Jiang-Bo & Ji, Qiang, 2014. "Multi-perspective analysis of China's energy supply security," Energy, Elsevier, vol. 64(C), pages 541-550.
    9. Omar Farhan Al-Hardanee & Hüseyin Demirel, 2024. "Hydropower Station Status Prediction Using RNN and LSTM Algorithms for Fault Detection," Energies, MDPI, vol. 17(22), pages 1-23, November.
    10. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    11. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Niraj Buyo & Akbar Sheikh-Akbari & Farrukh Saleem, 2025. "An Ensemble Approach to Predict a Sustainable Energy Plan for London Households," Sustainability, MDPI, vol. 17(2), pages 1-30, January.
    13. Mondal, Md. Alam Hossain & Ringler, Claudia & Al-Riffai, Perrihan & Eldidi, Hagar & Breisinger, Clemens & Wiebelt, Manfred, 2019. "Long-term optimization of Egypt’s power sector: Policy implications," Energy, Elsevier, vol. 166(C), pages 1063-1073.
    14. Dong, Hanjiang & Zhu, Jizhong & Li, Shenglin & Wu, Wanli & Zhu, Haohao & Fan, Junwei, 2023. "Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks," Applied Energy, Elsevier, vol. 329(C).
    15. Hong Chang & Wei Sun & Xingsheng Gu, 2013. "Forecasting Energy CO 2 Emissions Using a Quantum Harmony Search Algorithm-Based DMSFE Combination Model," Energies, MDPI, vol. 6(3), pages 1-22, March.
    16. Peng Liu & Tieyan Zhang & Furui Tian & Yun Teng & Miaodong Yang, 2024. "Hybrid Decision Support Framework for Energy Scheduling Using Stochastic Optimization and Cooperative Game Theory," Energies, MDPI, vol. 17(24), pages 1-20, December.
    17. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    18. Massidda, Luca & Marrocu, Marino, 2023. "Total and thermal load forecasting in residential communities through probabilistic methods and causal machine learning," Applied Energy, Elsevier, vol. 351(C).
    19. Sampaio, Henrique César & Dias, Rubens Alves & Balestieri, José Antônio Perrella, 2013. "Sustainable urban energy planning: The case study of a tropical city," Applied Energy, Elsevier, vol. 104(C), pages 924-935.
    20. Rauf, Abdul & Zhang, Jin & Li, Jinkai & Amin, Waqas, 2018. "Structural changes, energy consumption and carbon emissions in China: Empirical evidence from ARDL bound testing model," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 194-206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:660-:d:1581178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.