Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fan, Cheng & Sun, Yongjun & Xiao, Fu & Ma, Jie & Lee, Dasheng & Wang, Jiayuan & Tseng, Yen Chieh, 2020. "Statistical investigations of transfer learning-based methodology for short-term building energy predictions," Applied Energy, Elsevier, vol. 262(C).
- He, Feifei & Zhou, Jianzhong & Feng, Zhong-kai & Liu, Guangbiao & Yang, Yuqi, 2019. "A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm," Applied Energy, Elsevier, vol. 237(C), pages 103-116.
- Per Ahlgren & Bo Jarneving & Ronald Rousseau, 2003. "Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(6), pages 550-560, April.
- Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
- Bedi, Jatin & Toshniwal, Durga, 2019. "Deep learning framework to forecast electricity demand," Applied Energy, Elsevier, vol. 238(C), pages 1312-1326.
- Zhang, Guiqing & Tian, Chenlu & Li, Chengdong & Zhang, Jun Jason & Zuo, Wangda, 2020. "Accurate forecasting of building energy consumption via a novel ensembled deep learning method considering the cyclic feature," Energy, Elsevier, vol. 201(C).
- Peng, Yuzhen & Rysanek, Adam & Nagy, Zoltán & Schlüter, Arno, 2018. "Using machine learning techniques for occupancy-prediction-based cooling control in office buildings," Applied Energy, Elsevier, vol. 211(C), pages 1343-1358.
- Peng, Lu & Wang, Lin & Xia, De & Gao, Qinglu, 2022. "Effective energy consumption forecasting using empirical wavelet transform and long short-term memory," Energy, Elsevier, vol. 238(PB).
- Wang, Zhaohua & Huang, Wanjing & Chen, Zhongfei, 2019. "The peak of CO2 emissions in China: A new approach using survival models," Energy Economics, Elsevier, vol. 81(C), pages 1099-1108.
- Ahmad, Tanveer & Zhang, Hongcai, 2020. "Novel deep supervised ML models with feature selection approach for large-scale utilities and buildings short and medium-term load requirement forecasts," Energy, Elsevier, vol. 209(C).
- Zhou, Xinlei & Lin, Wenye & Kumar, Ritunesh & Cui, Ping & Ma, Zhenjun, 2022. "A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption," Applied Energy, Elsevier, vol. 306(PB).
- Fan, Cheng & Xiao, Fu & Zhao, Yang, 2017. "A short-term building cooling load prediction method using deep learning algorithms," Applied Energy, Elsevier, vol. 195(C), pages 222-233.
- Xia Wang & Jiachen Yuan & Kairui You & Xianrui Ma & Zhaoji Li, 2023. "Using Real Building Energy Use Data to Explain the Energy Performance Gap of Energy-Efficient Residential Buildings: A Case Study from the Hot Summer and Cold Winter Zone in China," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
- Bianchi, Carlo & Zhang, Liang & Goldwasser, David & Parker, Andrew & Horsey, Henry, 2020. "Modeling occupancy-driven building loads for large and diversified building stocks through the use of parametric schedules," Applied Energy, Elsevier, vol. 276(C).
- Jallal, Mohammed Ali & González-Vidal, Aurora & Skarmeta, Antonio F. & Chabaa, Samira & Zeroual, Abdelouhab, 2020. "A hybrid neuro-fuzzy inference system-based algorithm for time series forecasting applied to energy consumption prediction," Applied Energy, Elsevier, vol. 268(C).
- Chen, Yibo & Tan, Hongwei, 2017. "Short-term prediction of electric demand in building sector via hybrid support vector regression," Applied Energy, Elsevier, vol. 204(C), pages 1363-1374.
- Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
- Fan, Cheng & Wang, Jiayuan & Gang, Wenjie & Li, Shenghan, 2019. "Assessment of deep recurrent neural network-based strategies for short-term building energy predictions," Applied Energy, Elsevier, vol. 236(C), pages 700-710.
- Liu, Jiangyan & Zhang, Qing & Dong, Zhenxiang & Li, Xin & Li, Guannan & Xie, Yi & Li, Kuining, 2021. "Quantitative evaluation of the building energy performance based on short-term energy predictions," Energy, Elsevier, vol. 223(C).
- Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
- Yong Zhou & Lingyu Wang & Junhao Qian, 2022. "Application of Combined Models Based on Empirical Mode Decomposition, Deep Learning, and Autoregressive Integrated Moving Average Model for Short-Term Heating Load Predictions," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
- Wei, Yixuan & Xia, Liang & Pan, Song & Wu, Jinshun & Zhang, Xingxing & Han, Mengjie & Zhang, Weiya & Xie, Jingchao & Li, Qingping, 2019. "Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks," Applied Energy, Elsevier, vol. 240(C), pages 276-294.
- Das, Anooshmita & Annaqeeb, Masab Khalid & Azar, Elie & Novakovic, Vojislav & Kjærgaard, Mikkel Baun, 2020. "Occupant-centric miscellaneous electric loads prediction in buildings using state-of-the-art deep learning methods," Applied Energy, Elsevier, vol. 269(C).
- Himeur, Yassine & Ghanem, Khalida & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2021. "Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives," Applied Energy, Elsevier, vol. 287(C).
- Piscitelli, Marco Savino & Brandi, Silvio & Capozzoli, Alfonso, 2019. "Recognition and classification of typical load profiles in buildings with non-intrusive learning approach," Applied Energy, Elsevier, vol. 255(C).
- Dai, Yeming & Zhao, Pei, 2020. "A hybrid load forecasting model based on support vector machine with intelligent methods for feature selection and parameter optimization," Applied Energy, Elsevier, vol. 279(C).
- Wang, Jian Qi & Du, Yu & Wang, Jing, 2020. "LSTM based long-term energy consumption prediction with periodicity," Energy, Elsevier, vol. 197(C).
- Qian, Fanyue & Gao, Weijun & Yang, Yongwen & Yu, Dan, 2020. "Potential analysis of the transfer learning model in short and medium-term forecasting of building HVAC energy consumption," Energy, Elsevier, vol. 193(C).
- Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Guannan & Li, Fan & Ahmad, Tanveer & Liu, Jiangyan & Li, Tao & Fang, Xi & Wu, Yubei, 2022. "Performance evaluation of sequence-to-sequence-Attention model for short-term multi-step ahead building energy predictions," Energy, Elsevier, vol. 259(C).
- Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
- Li, Tao & Liu, Xiangyu & Li, Guannan & Wang, Xing & Ma, Jiangqiaoyu & Xu, Chengliang & Mao, Qianjun, 2024. "A systematic review and comprehensive analysis of building occupancy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Liu, Che & Li, Fan & Zhang, Chenghui & Sun, Bo & Zhang, Guanguan, 2023. "A day-ahead prediction method for high-resolution electricity consumption in residential units," Energy, Elsevier, vol. 265(C).
- Liang, Xinbin & Chen, Siliang & Zhu, Xu & Jin, Xinqiao & Du, Zhimin, 2023. "Domain knowledge decomposition of building energy consumption and a hybrid data-driven model for 24-h ahead predictions," Applied Energy, Elsevier, vol. 344(C).
- Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
- Manuel Jaramillo & Wilson Pavón & Lisbeth Jaramillo, 2024. "Adaptive Forecasting in Energy Consumption: A Bibliometric Analysis and Review," Data, MDPI, vol. 9(1), pages 1-23, January.
- Cao, Wenqiang & Yu, Junqi & Chao, Mengyao & Wang, Jingqi & Yang, Siyuan & Zhou, Meng & Wang, Meng, 2023. "Short-term energy consumption prediction method for educational buildings based on model integration," Energy, Elsevier, vol. 283(C).
- Liu, Jiangyan & Zhang, Qing & Dong, Zhenxiang & Li, Xin & Li, Guannan & Xie, Yi & Li, Kuining, 2021. "Quantitative evaluation of the building energy performance based on short-term energy predictions," Energy, Elsevier, vol. 223(C).
- Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
- Li, Guannan & Wu, Yubei & Yoon, Sungmin & Fang, Xi, 2024. "Comprehensive transferability assessment of short-term cross-building-energy prediction using deep adversarial network transfer learning," Energy, Elsevier, vol. 299(C).
- Tang, Lingfeng & Xie, Haipeng & Wang, Xiaoyang & Bie, Zhaohong, 2023. "Privacy-preserving knowledge sharing for few-shot building energy prediction: A federated learning approach," Applied Energy, Elsevier, vol. 337(C).
- Ng, Rong Wang & Begam, Kasim Mumtaj & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2021. "An improved self-organizing incremental neural network model for short-term time-series load prediction," Applied Energy, Elsevier, vol. 292(C).
- Zou, Rongwei & Yang, Qiliang & Xing, Jianchun & Zhou, Qizhen & Xie, Liqiang & Chen, Wenjie, 2024. "Predicting the electric power consumption of office buildings based on dynamic and static hybrid data analysis," Energy, Elsevier, vol. 290(C).
- Fang, Xi & Gong, Guangcai & Li, Guannan & Chun, Liang & Li, Wenqiang & Peng, Pei, 2021. "A hybrid deep transfer learning strategy for short term cross-building energy prediction," Energy, Elsevier, vol. 215(PB).
- Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Chen, Zhiwen & Deng, Qiao & Ren, Hao & Zhao, Zhengrun & Peng, Tao & Yang, Chunhua & Gui, Weihua, 2022. "A new energy consumption prediction method for chillers based on GraphSAGE by combining empirical knowledge and operating data," Applied Energy, Elsevier, vol. 310(C).
- Xing, Zhuoqun & Pan, Yiqun & Yang, Yiting & Yuan, Xiaolei & Liang, Yumin & Huang, Zhizhong, 2024. "Transfer learning integrating similarity analysis for short-term and long-term building energy consumption prediction," Applied Energy, Elsevier, vol. 365(C).
- Fan, Cheng & Lei, Yutian & Sun, Yongjun & Piscitelli, Marco Savino & Chiosa, Roberto & Capozzoli, Alfonso, 2022. "Data-centric or algorithm-centric: Exploiting the performance of transfer learning for improving building energy predictions in data-scarce context," Energy, Elsevier, vol. 240(C).
- Yun Duan, 2022. "A Novel Interval Energy-Forecasting Method for Sustainable Building Management Based on Deep Learning," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
More about this item
Keywords
hourly prediction; training set selection; feature search; scenario analysis; machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7458-:d:1137839. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.