IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1606-d1058961.html
   My bibliography  Save this article

An Assessment of the Conversion of Biomass and Industrial Waste Products to Activated Carbon

Author

Listed:
  • Eric N. Coker

    (Sandia National Laboratories, Albuquerque, NM 87123, USA)

  • Xavier Lujan-Flores

    (Sandia National Laboratories, Albuquerque, NM 87123, USA)

  • Burl Donaldson

    (Sandia National Laboratories, Albuquerque, NM 87123, USA)

  • Nadir Yilmaz

    (Department of Mechanical Engineering, Howard University, Washington, DC 20059, USA)

  • Alpaslan Atmanli

    (Department of Mechanical Engineering, National Defense University, 06654 Ankara, Turkey)

Abstract

The production of biochar from biomass and industrial wastes provides both environmental and economic sustainability. An effective way to ensure the sustainability of biochar is to produce high value-added activated carbon. The desirable characteristic of activated carbon is its high surface area for efficient adsorption of contaminants. Feedstocks can include a number of locally available materials with little or negative value, such as orchard slash and crop residue. In this context, it is necessary to determine and know the conversion effects of the feedstocks to be used in the production of activated carbon. In the study conducted for this purpose; several samples (piñon wood, pecan wood, hardwood, dried grass, Wyoming coal dust, Illinois coal dust, Missouri coal dust, and tire residue) of biomass and industrial waste products were investigated for their conversion into activated carbon. Small samples (approximately 0.02 g) of the feedstocks were pyrolyzed under inert or mildly oxidizing conditions in a thermal analyzer to determine their mass loss as a function of temperature and atmosphere. Once suitable conditions were established, larger quantities (up to 0.6 g) were pyrolyzed in a tube furnace and harvested for characterization of their surface area and porosity via gas sorption analysis. Among the samples used, piñon wood gave the best results, and pyrolysis temperatures between 600 and 650 °C gave the highest yield. Slow pyrolysis or hydrothermal carbonization have come to the fore as recommended production methods for the conversion of biochar, which can be produced from biomass and industrial wastes, into activated carbon.

Suggested Citation

  • Eric N. Coker & Xavier Lujan-Flores & Burl Donaldson & Nadir Yilmaz & Alpaslan Atmanli, 2023. "An Assessment of the Conversion of Biomass and Industrial Waste Products to Activated Carbon," Energies, MDPI, vol. 16(4), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1606-:d:1058961
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1606/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1606/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    2. Malyan, Sandeep K. & Kumar, Smita S. & Fagodiya, Ram Kishor & Ghosh, Pooja & Kumar, Amit & Singh, Rajesh & Singh, Lakhveer, 2021. "Biochar for environmental sustainability in the energy-water-agroecosystem nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Buentello-Montoya, D.A. & Zhang, X. & Li, J., 2019. "The use of gasification solid products as catalysts for tar reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 399-412.
    4. Ao, Wenya & Fu, Jie & Mao, Xiao & Kang, Qinhao & Ran, Chunmei & Liu, Yang & Zhang, Hedong & Gao, Zuopeng & Li, Jing & Liu, Guangqing & Dai, Jianjun, 2018. "Microwave assisted preparation of activated carbon from biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 958-979.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esin Apaydın Varol & Ülker Mutlu, 2023. "TGA-FTIR Analysis of Biomass Samples Based on the Thermal Decomposition Behavior of Hemicellulose, Cellulose, and Lignin," Energies, MDPI, vol. 16(9), pages 1-19, April.
    2. Khodaei, H. & Álvarez-Bermúdez, C. & Chapela, S. & Olson, C. & MacKenzie, M.D. & Gómez, M.A. & Porteiro, J., 2024. "Eulerian CFD simulation of biomass thermal conversion in an indirect slow pyrolysis rotary kiln unit to produce biochar from recycled waste wood," Energy, Elsevier, vol. 288(C).
    3. Wang, Lin & Yang, Yongbin & Ou, Yang & Zhong, Qiang & Zhang, Yan & Yi, Lingyun & Li, Qian & Huang, Zhucheng & Jiang, Tao, 2024. "In-depth study on the synergistic conversion mechanism of iron ore with waste biochar for co-producing directly reduced iron (DRI) and syngas," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuangjun & Yuan, Xiangzhou & Deng, Shuai & Zhao, Li & Lee, Ki Bong, 2021. "A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Yuan, Xiangzhou & Wang, Junyao & Deng, Shuai & Suvarna, Manu & Wang, Xiaonan & Zhang, Wei & Hamilton, Sara Triana & Alahmed, Ammar & Jamal, Aqil & Park, Ah-Hyung Alissa & Bi, Xiaotao & Ok, Yong Sik, 2022. "Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    4. Sui, Haiqing & Chen, Jianfeng & Cheng, Wei & Zhu, Youjian & Zhang, Wennan & Hu, Junhao & Jiang, Hao & Shao, Jing'ai & Chen, Hanping, 2024. "Effect of oxidative torrefaction on fuel and pelletizing properties of agricultural biomass in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 226(C).
    5. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    6. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    7. Mäkelä, Mikko & Yoshikawa, Kunio, 2016. "Simulating hydrothermal treatment of sludge within a pulp and paper mill," Applied Energy, Elsevier, vol. 173(C), pages 177-183.
    8. Ram K. Fagodiya & Sandeep K. Malyan & Devendra Singh & Amit Kumar & Rajender K. Yadav & Parbodh C. Sharma & Himanshu Pathak, 2022. "Greenhouse Gas Emissions from Salt-Affected Soils: Mechanistic Understanding of Interplay Factors and Reclamation Approaches," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    9. Yao, Zhongliang & Ma, Xiaoqian & Xiao, Zhiyuan, 2020. "The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth," Renewable Energy, Elsevier, vol. 151(C), pages 514-527.
    10. Tobias Pröll & Florian Zerobin, 2019. "Biomass-based negative emission technology options with combined heat and power generation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1307-1324, October.
    11. Tariqul Islam & Yanliang Li & Hefa Cheng, 2021. "Biochars and Engineered Biochars for Water and Soil Remediation: A Review," Sustainability, MDPI, vol. 13(17), pages 1-25, September.
    12. Yang, Haiping & Chen, Zhiqun & Chen, Wei & Chen, Yingquan & Wang, Xianhua & Chen, Hanping, 2020. "Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis," Energy, Elsevier, vol. 210(C).
    13. Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Chater, Hamza & Asbik, Mohamed, 2024. "Innovative mathematical approach for hydrothermal carbonization process using an inverse method: Experimental analysis, rheology behavior, and numerical comparative investigation," Energy, Elsevier, vol. 290(C).
    15. Buentello-Montoya, David & Zhang, Xiaolei & Li, Jun & Ranade, Vivek & Marques, Simão & Geron, Marco, 2020. "Performance of biochar as a catalyst for tar steam reforming: Effect of the porous structure," Applied Energy, Elsevier, vol. 259(C).
    16. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    17. Leslie Lara-Ramos & Ana Cervera-Mata & Jesús Fernández-Bayo & Miguel Navarro-Alarcón & Gabriel Delgado & Alejandro Fernández-Arteaga, 2023. "Hydrochars Derived from Spent Coffee Grounds as Zn Bio-Chelates for Agronomic Biofortification," Sustainability, MDPI, vol. 15(13), pages 1-13, July.
    18. Jia Yen Lai & Lock Hei Ngu & Siti Salwa Hashim, 2021. "A review of CO2 adsorbents performance for different carbon capture technology processes conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 1076-1117, October.
    19. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    20. Baghel, Paramjeet & Sakhiya, Anil Kumar & Kaushal, Priyanka, 2022. "Influence of temperature on slow pyrolysis of Prosopis Juliflora: An experimental and thermodynamic approach," Renewable Energy, Elsevier, vol. 185(C), pages 538-551.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1606-:d:1058961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.