IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v151y2020icp514-527.html
   My bibliography  Save this article

The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth

Author

Listed:
  • Yao, Zhongliang
  • Ma, Xiaoqian
  • Xiao, Zhiyuan

Abstract

The effect of two-level pretreatment on the slow/fast pyrolysis characteristics of water hyacinth were studied. The water/acid wash had the significant effect on remove the sulfur, nitrogen and ash, which can greatly improve the quality of pyrolysis products. water/acid wash had negative impact on the heavy oil in the hydrothermal system. The heavy oil yield of the Hy-R, Hy-W and Hy-A were 37.24%, 25.70% and 27.06 w/w %, respectively. Among all the pretreatments, except for K element, all the detected heavy metals (Al, As, Cr, Cu, Mn, Ni and Zn) accumulated. In addition, the CPI of Tr-R, and Tr-W and Tr- A were −23.91, −13.93 and −18.85 × (10−7/(min2 × °C3) which were much larger than that of Hy-R, Hy-W and Hy-A (−2.99,-6.60 and −9.26 × (10−7/(min2 × °C3)). The absorbance of NH3, HCN, C=O, CO, CO2, CH4 and H2O were detected in slow pyrolysis. The pyrolysis effectiveness index of Hy-R reached the largest value of 0.375. The volatiles of fast pyrolysis were divided into fourteen groups, including CO2, alcohols, acids, phenols, aromatic hydrocarbons, esters, aldehydes, ketones, aliphatic & alicyclic hydrocarbons, nitrogen containing compounds, organo-sulfur compounds, sugars, ethers, furans to present the compositions of the pyrolysis vapors.

Suggested Citation

  • Yao, Zhongliang & Ma, Xiaoqian & Xiao, Zhiyuan, 2020. "The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth," Renewable Energy, Elsevier, vol. 151(C), pages 514-527.
  • Handle: RePEc:eee:renene:v:151:y:2020:i:c:p:514-527
    DOI: 10.1016/j.renene.2019.11.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119317331
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.11.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wilk, Małgorzata & Magdziarz, Aneta, 2017. "Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus," Energy, Elsevier, vol. 140(P1), pages 1292-1304.
    2. Shen, Yafei & Yu, Shili & Ge, Shun & Chen, Xingming & Ge, Xinlei & Chen, Mindong, 2017. "Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale," Energy, Elsevier, vol. 118(C), pages 312-323.
    3. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    4. Barua, Visva Bharati & Goud, Vaibhav V. & Kalamdhad, Ajay S., 2018. "Microbial pretreatment of water hyacinth for enhanced hydrolysis followed by biogas production," Renewable Energy, Elsevier, vol. 126(C), pages 21-29.
    5. Huang, Neng & Zhao, Peitao & Ghosh, Sudip & Fedyukhin, Alexander, 2019. "Co-hydrothermal carbonization of polyvinyl chloride and moist biomass to remove chlorine and inorganics for clean fuel production," Applied Energy, Elsevier, vol. 240(C), pages 882-892.
    6. Yao, Zhongliang & Ma, Xiaoqian, 2017. "A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis," Energy, Elsevier, vol. 141(C), pages 1156-1165.
    7. He, Chao & Tang, Chunyan & Li, Chuanhao & Yuan, Jihui & Tran, Khanh-Quang & Bach, Quang-Vu & Qiu, Rongliang & Yang, Yanhui, 2018. "Wet torrefaction of biomass for high quality solid fuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 259-271.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Yingyuan & Fakudze, Sandile & Zhang, Yiming & Ma, Ru & Shang, Qianqian & Chen, Jianqiang & Liu, Chengguo & Chu, Qiulu, 2022. "Co-hydrothermal carbonization of pomelo peel and PVC for production of hydrochar pellets with enhanced fuel properties and dechlorination," Energy, Elsevier, vol. 239(PD).
    2. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Zhang, Deli & Wang, Fang & Shen, Xiuli & Yi, Weiming & Li, Zhihe & Li, Yongjun & Tian, Chunyan, 2018. "Comparison study on fuel properties of hydrochars produced from corn stalk and corn stalk digestate," Energy, Elsevier, vol. 165(PB), pages 527-536.
    4. Ning, Xiaojun & Dang, Han & Xu, Runsheng & Wang, Guangwei & Zhang, Jianliang & Zhang, Nan & Wang, Chuan, 2022. "Co-hydrothermal carbonization of biomass and PVC for clean blast furnace injection fuel production: Experiment and DFT calculation," Renewable Energy, Elsevier, vol. 187(C), pages 156-168.
    5. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    6. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    7. Eunhye Song & Ho Kim & Kyung Woo Kim & Young-Man Yoon, 2023. "Characteristic Evaluation of Different Carbonization Processes for Hydrochar, Torrefied Char, and Biochar Produced from Cattle Manure," Energies, MDPI, vol. 16(7), pages 1-14, April.
    8. Briongos, J.V. & Taramona, S. & Gómez-Hernández, J. & Mulone, V. & Santana, D., 2021. "Solar and biomass hybridization through hydrothermal carbonization," Renewable Energy, Elsevier, vol. 177(C), pages 268-279.
    9. Zhao, Peitao & Lin, Chuanjin & Li, Yilong & Zhang, Jing & Huang, Neng & Cui, Xin & Liu, Fang & Guo, Qingjie, 2022. "Combustion and slagging characteristics of hydrochar derived from the co-hydrothermal carbonization of PVC and alkali coal," Energy, Elsevier, vol. 244(PA).
    10. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    11. Zhu, Zongyuan & Xu, Zhen, 2020. "The rational design of biomass-derived carbon materials towards next-generation energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Huang, Neng & Zhao, Peitao & Ghosh, Sudip & Fedyukhin, Alexander, 2019. "Co-hydrothermal carbonization of polyvinyl chloride and moist biomass to remove chlorine and inorganics for clean fuel production," Applied Energy, Elsevier, vol. 240(C), pages 882-892.
    13. Dang, Han & Xu, Runsheng & Zhang, Jianliang & Wang, Mingyong & Ye, Lian & Jia, Guoli, 2023. "Removal of oxygen-containing functional groups during hydrothermal carbonization of biomass: Experimental and DFT study," Energy, Elsevier, vol. 276(C).
    14. Lin, Yousheng & Ge, Ya & Xiao, Hanmin & He, Qing & Wang, Wenhao & Chen, Baiman, 2020. "Investigation of hydrothermal co-carbonization of waste textile with waste wood, waste paper and waste food from typical municipal solid wastes," Energy, Elsevier, vol. 210(C).
    15. Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.
    16. Cheng, Chen & Ding, Lu & Guo, Qinghua & He, Qing & Gong, Yan & Alexander, Kozlov N. & Yu, Guangsuo, 2022. "Process analysis and kinetic modeling of coconut shell hydrothermal carbonization," Applied Energy, Elsevier, vol. 315(C).
    17. Yang, Fangming & Liu, Xin & Li, Mengbin & Uguna, Clement & Wang, Wenlong & Sun, Chenggong, 2023. "Polyvinyl chloride (PVC) derived microporous carbons prepared via hydrothermal dechlorination and potassium hydroxide activation for efficient CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    18. Shulun Han & Li Bai & Mingshu Chi & Xiuling Xu & Zhao Chen & Kecheng Yu, 2022. "Conversion of Waste Corn Straw to Value-Added Fuel via Hydrothermal Carbonization after Acid Washing," Energies, MDPI, vol. 15(5), pages 1-14, March.
    19. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Mateusz Wnukowski & Przemysław Seruga & Marcin Baranowski & Halina Pawlak-Kruczek & Monika Serafin-Tkaczuk & Krystian Krochmalny & Lukasz Niedzwi, 2020. "Treatment of Liquid By-Products of Hydrothermal Carbonization (HTC) of Agricultural Digestate Using Membrane Separation," Energies, MDPI, vol. 13(1), pages 1-12, January.
    20. Bajwa, Dilpreet S. & Peterson, Tyler & Sharma, Neeta & Shojaeiarani, Jamileh & Bajwa, Sreekala G., 2018. "A review of densified solid biomass for energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 296-305.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:151:y:2020:i:c:p:514-527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.