IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v178y2023ics1364032123000965.html
   My bibliography  Save this article

Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems

Author

Listed:
  • Lee, Jechan
  • Kim, Soosan
  • You, Siming
  • Park, Young-Kwon

Abstract

Anthropogenic activities and advancements in industries boost global energy demand and increase fossil fuel consumption, causing several global environmental problems, such as climate change. As a climate change mitigation strategy, the use of renewable energy technologies has gained unprecedented interest. In particular, the thermochemical processing of lignocellulosic biomass integrated with other renewable energy technologies has emerged rapidly. It is critical to select appropriate integrated renewable energy system configurations for sustainable and feasible power generation towards higher environmental benefits. Understanding the possible configurations of thermochemical lignocellulosic biomass processing technologies (gasification, pyrolysis, hydrothermal gasification, or hydrothermal carbonization) integrated with renewable energy technologies (solar thermal, fuel cell, fusion power, or energy storage) is crucial for the further development and propagation of the integrated renewable energy system. Hence, we provide a systematic review of the thermochemical conversion of lignocellulosic biomass integrated with the other renewable energy technologies. Finally, the challenges associated with the implementation of these systems and suggestions for future research on the systems are discussed.

Suggested Citation

  • Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:rensus:v:178:y:2023:i:c:s1364032123000965
    DOI: 10.1016/j.rser.2023.113240
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123000965
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Biomass gasification for decentralized power generation: The Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 73-92, January.
    2. Lee, Jechan & Choi, Dongho & Kwon, Eilhann E. & Ok, Yong Sik, 2017. "Functional modification of hydrothermal liquefaction products of microalgal biomass using CO2," Energy, Elsevier, vol. 137(C), pages 412-418.
    3. Yadhu N. Guragain & Praveen V. Vadlani, 2021. "Renewable Biomass Utilization: A Way Forward to Establish Sustainable Chemical and Processing Industries," Clean Technol., MDPI, vol. 3(1), pages 1-17, March.
    4. Facchinetti, Emanuele & Gassner, Martin & D’Amelio, Matilde & Marechal, François & Favrat, Daniel, 2012. "Process integration and optimization of a solid oxide fuel cell – Gas turbine hybrid cycle fueled with hydrothermally gasified waste biomass," Energy, Elsevier, vol. 41(1), pages 408-419.
    5. Yan Xu & Kun Yang & Jiahui Zhou & Guohao Zhao, 2020. "Coal-Biomass Co-Firing Power Generation Technology: Current Status, Challenges and Policy Implications," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    6. Carley, Sanya, 2009. "State renewable energy electricity policies: An empirical evaluation of effectiveness," Energy Policy, Elsevier, vol. 37(8), pages 3071-3081, August.
    7. Li, Lanyu & Yao, Zhiyi & You, Siming & Wang, Chi-Hwa & Chong, Clive & Wang, Xiaonan, 2019. "Optimal design of negative emission hybrid renewable energy systems with biochar production," Applied Energy, Elsevier, vol. 243(C), pages 233-249.
    8. Jia, Junxi & Shu, Lingyun & Zang, Guiyan & Xu, Lijun & Abudula, Abuliti & Ge, Kun, 2018. "Energy analysis and techno-economic assessment of a co-gasification of woody biomass and animal manure, solid oxide fuel cells and micro gas turbine hybrid system," Energy, Elsevier, vol. 149(C), pages 750-761.
    9. Hameed, Zeeshan & Aslam, Muhammad & Khan, Zakir & Maqsood, Khuram & Atabani, A.E. & Ghauri, Moinuddin & Khurram, Muhammad Shahzad & Rehan, Mohammad & Nizami, Abdul-Sattar, 2021. "Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    10. Monlau, F. & Sambusiti, C. & Antoniou, N. & Barakat, A. & Zabaniotou, A., 2015. "A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process," Applied Energy, Elsevier, vol. 148(C), pages 32-38.
    11. Shackley, Simon & Carter, Sarah & Knowles, Tony & Middelink, Erik & Haefele, Stephan & Haszeldine, Stuart, 2012. "Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part II: Field trial results, carbon abatement, economic assessment and conclusions," Energy Policy, Elsevier, vol. 41(C), pages 618-623.
    12. Yao, Zhiyi & Li, Wangliang & Kan, Xiang & Dai, Yanjun & Tong, Yen Wah & Wang, Chi-Hwa, 2017. "Anaerobic digestion and gasification hybrid system for potential energy recovery from yard waste and woody biomass," Energy, Elsevier, vol. 124(C), pages 133-145.
    13. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    14. Kim, Soosan & Byun, Jaewon & Park, Hoyoung & Lee, Nahyeon & Han, Jeehoon & Lee, Jechan, 2022. "Energy-efficient thermal waste treatment process with no CO2 emission: A case study of waste tea bag," Energy, Elsevier, vol. 241(C).
    15. Wang, Xiaonan & Palazoglu, Ahmet & El-Farra, Nael H., 2015. "Operational optimization and demand response of hybrid renewable energy systems," Applied Energy, Elsevier, vol. 143(C), pages 324-335.
    16. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    17. Lee, Jechan & Kim, Ki-Hyun & Kwon, Eilhann E., 2017. "Biochar as a Catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 70-79.
    18. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & O’Shea, Richard & Murphy, Jerry D., 2020. "Improving gaseous biofuel yield from seaweed through a cascading circular bioenergy system integrating anaerobic digestion and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    19. Jia, Junxi & Abudula, Abuliti & Wei, Liming & Sun, Baozhi & Shi, Yue, 2015. "Thermodynamic modeling of an integrated biomass gasification and solid oxide fuel cell system," Renewable Energy, Elsevier, vol. 81(C), pages 400-410.
    20. Tanaka, Yasuto & Mesfun, Sennai & Umeki, Kentaro & Toffolo, Andrea & Tamaura, Yutaka & Yoshikawa, Kunio, 2015. "Thermodynamic performance of a hybrid power generation system using biomass gasification and concentrated solar thermal processes," Applied Energy, Elsevier, vol. 160(C), pages 664-672.
    21. Nam, Hoseok & Ibano, Kenzo & Konishi, Satoshi, 2020. "Cost analysis and energy return on investment of fuel cell and gas turbine integrated fusion-biomass hybrid system; application of a small scale conceptual fusion reactor GNOME," Energy, Elsevier, vol. 203(C).
    22. Ashok, S., 2007. "Optimised model for community-based hybrid energy system," Renewable Energy, Elsevier, vol. 32(7), pages 1155-1164.
    23. Chauhan, Anurag & Saini, R.P., 2016. "Techno-economic feasibility study on Integrated Renewable Energy System for an isolated community of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 388-405.
    24. Ravaghi-Ardebili, Zohreh & Manenti, Flavio & Corbetta, Michele & Pirola, Carlo & Ranzi, Eliseo, 2015. "Biomass gasification using low-temperature solar-driven steam supply," Renewable Energy, Elsevier, vol. 74(C), pages 671-680.
    25. Bang-Møller, C. & Rokni, M. & Elmegaard, B., 2011. "Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system," Energy, Elsevier, vol. 36(8), pages 4740-4752.
    26. Li, Xian & Shen, Ye & Kan, Xiang & Hardiman, Timothy Kurnia & Dai, Yanjun & Wang, Chi-Hwa, 2018. "Thermodynamic assessment of a solar/autothermal hybrid gasification CCHP system with an indirectly radiative reactor," Energy, Elsevier, vol. 142(C), pages 201-214.
    27. Salman, Chaudhary Awais & Schwede, Sebastian & Thorin, Eva & Yan, Jinyue, 2017. "Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes," Applied Energy, Elsevier, vol. 204(C), pages 1074-1083.
    28. Han, Jeehoon & Byun, Jaewon & Kwon, Oseok & Lee, Jechan, 2022. "Climate variability and food waste treatment: Analysis for bioenergy sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    29. Asadullah, Mohammad, 2014. "Barriers of commercial power generation using biomass gasification gas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 201-215.
    30. Saxena, R.C. & Adhikari, D.K. & Goyal, H.B., 2009. "Biomass-based energy fuel through biochemical routes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 167-178, January.
    31. Safarian, Sahar & Unnthorsson, Runar & Richter, Christiaan, 2020. "Performance analysis and environmental assessment of small-scale waste biomass gasification integrated CHP in Iceland," Energy, Elsevier, vol. 197(C).
    32. Pérez-Navarro, A. & Alfonso, D. & Álvarez, C. & Ibáñez, F. & Sánchez, C. & Segura, I., 2010. "Hybrid biomass-wind power plant for reliable energy generation," Renewable Energy, Elsevier, vol. 35(7), pages 1436-1443.
    33. Alexander N. Kozlov & Nikita V. Tomin & Denis N. Sidorov & Electo E. S. Lora & Victor G. Kurbatsky, 2020. "Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems Using Reinforcement Learning Techniques," Energies, MDPI, vol. 13(10), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Ruo-Ying & Lan, Hai-Na & Liu, Zhi-Hua & Li, Bing-Zhi & Yuan, Ying-Jin, 2024. "Microbial valorization of lignin toward coumarins: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Jeon, Kyung-Won & Gong, Ji-Hyeon & Kim, Min-Ju & Shim, Jae-Oh & Jang, Won-Jun & Roh, Hyun-Seog, 2024. "Review on the production of renewable biofuel: Solvent-free deoxygenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    3. Ramezani, Mohammad & Khazaei, Moein & Gholian-Jouybari, Fatemeh & Sandoval-Correa, Alejandro & Bonakdari, Hossein & Hajiaghaei-Keshteli, Mostafa, 2024. "Turquoise hydrogen and waste optimization: A Bi-objective closed-loop and sustainable supply chain model for a case in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    4. Juliana Araújo Pereira & Flávio José Simioni & Juliana Ferreira Soares & Jeane de Almeida do Rosário & Eduardo Bertol & Fabio Murilo Padilha Souza & Luiz Moreira Coelho Junior, 2024. "Circular Economy Practices in Biomass-Fired Power Plants in Brazil: An Assessment Using the ReSOLVE Framework," Sustainability, MDPI, vol. 16(21), pages 1-19, October.
    5. Lovisa Panduleni Johannes & Tran Dang Xuan, 2024. "Comparative Analysis of Acidic and Alkaline Pretreatment Techniques for Bioethanol Production from Perennial Grasses," Energies, MDPI, vol. 17(5), pages 1-33, February.
    6. Safder, Usman & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2024. "Techno-economic assessment of a novel integrated multigeneration system to synthesize e-methanol and green hydrogen in a carbon-neutral context," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    2. Kim, Jiwon & Park, Chanyeong & Park, Hoyoung & Han, Jeehoon & Lee, Jechan & Kim, Sung-Kon, 2022. "Upcycling of cattle manure for simultaneous energy recovery and supercapacitor electrode production," Energy, Elsevier, vol. 258(C).
    3. Pode, Ramchandra, 2016. "Potential applications of rice husk ash waste from rice husk biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1468-1485.
    4. Richard Ochieng & Alemayehu Gebremedhin & Shiplu Sarker, 2022. "Integration of Waste to Bioenergy Conversion Systems: A Critical Review," Energies, MDPI, vol. 15(7), pages 1-22, April.
    5. Jia, Junxi & Shu, Lingyun & Zang, Guiyan & Xu, Lijun & Abudula, Abuliti & Ge, Kun, 2018. "Energy analysis and techno-economic assessment of a co-gasification of woody biomass and animal manure, solid oxide fuel cells and micro gas turbine hybrid system," Energy, Elsevier, vol. 149(C), pages 750-761.
    6. Wang, Zhi & Li, Jian & Yan, Beibei & Zhou, Shengquan & Zhu, Xiaochao & Cheng, Zhanjun & Chen, Guanyi, 2024. "Thermochemical processing of digestate derived from anaerobic digestion of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    8. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    9. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    10. Sánchez, M. & Clifford, B. & Nixon, J.D., 2018. "Modelling and evaluating a solar pyrolysis system," Renewable Energy, Elsevier, vol. 116(PA), pages 630-638.
    11. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Tewari, P.G., 2014. "Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 608-627.
    12. Alexander N. Kozlov & Nikita V. Tomin & Denis N. Sidorov & Electo E. S. Lora & Victor G. Kurbatsky, 2020. "Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems Using Reinforcement Learning Techniques," Energies, MDPI, vol. 13(10), pages 1-20, May.
    13. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    14. Kim, Jung-Hun & Oh, Jeong-Ik & Tsang, Yiu Fai & Park, Young-Kwon & Lee, Jechan & Kwon, Eilhann E., 2020. "CO2-assisted catalytic pyrolysis of digestate with steel slag," Energy, Elsevier, vol. 191(C).
    15. Vishnupriyan, J. & Manoharan, P.S., 2018. "Multi-criteria decision analysis for renewable energy integration: A southern India focus," Renewable Energy, Elsevier, vol. 121(C), pages 474-488.
    16. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.
    17. Simone Marzeddu & Andrea Cappelli & Andrea Ambrosio & María Alejandra Décima & Paolo Viotti & Maria Rosaria Boni, 2021. "A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy," Land, MDPI, vol. 10(11), pages 1-29, November.
    18. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    19. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2018. "Analysis on energy efficiency and CO2 emission reduction of an SOFC-based energy system served public buildings with large interior zones," Energy, Elsevier, vol. 165(PB), pages 1106-1118.
    20. Guiyan Zang & Jianan Zhang & Junxi Jia & Nathaniel Weger & Albert Ratner, 2019. "Clean Poultry Energy System Design Based on Biomass Gasification Technology: Thermodynamic and Economic Analysis," Energies, MDPI, vol. 12(22), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:178:y:2023:i:c:s1364032123000965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.