IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1347-d1048206.html
   My bibliography  Save this article

Transesterification and Hydrotreating Reactions of Rice Bran Oil for Bio-Hydrogenated Diesel Production

Author

Listed:
  • Praepilas Dujjanutat

    (Postdoctoral Training of Department of Biotechnology, Khon Kaen University, Khon Kaen 40002, Thailand
    Centre for Alternative Energy Research and Development (AERD), Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Nithinun Srihanun

    (Graduate School Khon Kaen University, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Papasanee Muanruksa

    (Postdoctoral Training of Department of Biotechnology, Khon Kaen University, Khon Kaen 40002, Thailand
    Centre for Alternative Energy Research and Development (AERD), Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

  • James Winterburn

    (Department of Chemical Engineering and Analytical Science (CEAS), The University of Manchester, Manchester M13 9PL, UK)

  • Pakawadee Kaewkannetra

    (Centre for Alternative Energy Research and Development (AERD), Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
    Department of Biotechnology, Faculty of Technology, Khon Kaen Univerisity, Khon Kaen 40002, Thailand)

Abstract

Two different methods of production of bio-hydrogenated diesel (BHD), simply called green diesel from rice bran oil (RBO), were performed. In the first route, a direct hydrotreating reaction of RBO to BHD catalysed by Pd/Al 2 O 3 was performed in a high-pressure batch reactor. Operating conditions were investigated as follows: catalyst loading (0.5 to 1.5% wt.), temperature (325 to 400 °C), initial hydrogen (H 2 ) pressure (40 to 60 bar) and reaction time (30 to 90 min). The optimal condition was obtained at 1% wt catalyst loading, 350 °C, 40 bar H 2 pressure and 60 min. Yields of crude/refined biofuels and BHD achieved were approximately 98%, 81.71% and 73.71%, respectively. In another route, transesterification together with hydrotreating reactions of rice bran methyl ester (RBME) to BHD was performed using the optimal conditions obtained from the first route. The amount of 98% crude biofuel was obtained and was equivalent to production yields of refined biofuel (85.71%) and BHD (68.51%). Furthermore, physical and chemical properties of both RBO/RBME green diesel were also considered following ASTM standard methods. In summary, both catalytic reactions were achieved in the range of a low-speed industrial diesel and were further recommended for BHD or green diesel production from RBO.

Suggested Citation

  • Praepilas Dujjanutat & Nithinun Srihanun & Papasanee Muanruksa & James Winterburn & Pakawadee Kaewkannetra, 2023. "Transesterification and Hydrotreating Reactions of Rice Bran Oil for Bio-Hydrogenated Diesel Production," Energies, MDPI, vol. 16(3), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1347-:d:1048206
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1347/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1347/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dujjanutat, Praepilas & Kaewkannetra, Pakawadee, 2020. "Production of bio-hydrogenated kerosene by catalytic hydrocracking from refined bleached deodorised palm/ palm kernel oils," Renewable Energy, Elsevier, vol. 147(P1), pages 464-472.
    2. Praepilas Dujjanutat & Arthit Neramittagapong & Pakawadee Kaewkannetra, 2019. "Optimization of Bio-Hydrogenated Kerosene from Refined Palm Oil by Catalytic Hydrocracking," Energies, MDPI, vol. 12(16), pages 1-15, August.
    3. Hongloi, Nitchakul & Prapainainar, Paweena & Seubsai, Anusorn & Sudsakorn, Kandis & Prapainainar, Chaiwat, 2019. "Nickel catalyst with different supports for green diesel production," Energy, Elsevier, vol. 182(C), pages 306-320.
    4. El Boulifi, N. & Bouaid, A. & Martinez, M. & Aracil, J., 2013. "Optimization and oxidative stability of biodiesel production from rice bran oil," Renewable Energy, Elsevier, vol. 53(C), pages 141-147.
    5. Mazaheri, Hoora & Ong, Hwai Chyuan & Masjuki, H.H. & Amini, Zeynab & Harrison, Mark D. & Wang, Chin-Tsan & Kusumo, Fitranto & Alwi, Azham, 2018. "Rice bran oil based biodiesel production using calcium oxide catalyst derived from Chicoreus brunneus shell," Energy, Elsevier, vol. 144(C), pages 10-19.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoang, Anh Tuan & Tabatabaei, Meisam & Aghbashlo, Mortaza & Carlucci, Antonio Paolo & Ölçer, Aykut I. & Le, Anh Tuan & Ghassemi, Abbas, 2021. "Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. M. Mofijur & F. Kusumo & I. M. Rizwanul Fattah & H. M. Mahmudul & M. G. Rasul & A. H. Shamsuddin & T. M. I. Mahlia, 2020. "Resource Recovery from Waste Coffee Grounds Using Ultrasonic-Assisted Technology for Bioenergy Production," Energies, MDPI, vol. 13(7), pages 1-15, April.
    3. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    4. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, R. & Ebadi, M.T. & Yusaf, Talal, 2019. "Characterization of biodiesel production (ultrasonic-assisted) from evening-primroses (Oenothera lamarckiana) as novel feedstock and its effect on CI engine parameters," Renewable Energy, Elsevier, vol. 130(C), pages 50-60.
    5. Lani, Nurul Saadiah & Ngadi, Norzita & Haron, Saharudin & Mohammed Inuwa, Ibrahim & Anako Opotu, Lawal, 2024. "The catalytic effect of calcium oxide and magnetite loading on magnetically supported calcium oxide-zeolite catalyst for biodiesel production from used cooking oil," Renewable Energy, Elsevier, vol. 222(C).
    6. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Seffati, Kambiz & Esmaeili, Hossein & Honarvar, Bizhan & Esfandiari, Nadia, 2020. "AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat," Renewable Energy, Elsevier, vol. 147(P1), pages 25-34.
    8. Verma, Vikas & Mishra, Ankit & Anand, Mohit & Farooqui, Saleem Akhtar & Sinha, Anil Kumar, 2022. "Catalytic hydrocracking of inedible palm stearin for the production of drop-in aviation fuel and comparison with other inedible oils," Renewable Energy, Elsevier, vol. 199(C), pages 1440-1450.
    9. Yano Surya Pradana & I Gusti B. N. Makertihartha & Antonius Indarto & Tirto Prakoso & Tatang Hernas Soerawidjaja, 2024. "A Review of Biodiesel Cold Flow Properties and Its Improvement Methods: Towards Sustainable Biodiesel Application," Energies, MDPI, vol. 17(18), pages 1-43, September.
    10. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    11. Fitranto Kusumo & T.M.I. Mahlia & A.H. Shamsuddin & Hwai Chyuan Ong & A.R Ahmad & Z. Ismail & Z.C. Ong & A.S. Silitonga, 2019. "The Effect of Multi-Walled Carbon Nanotubes-Additive in Physicochemical Property of Rice Brand Methyl Ester: Optimization Analysis," Energies, MDPI, vol. 12(17), pages 1-19, August.
    12. Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "Direct conversion of glyceride-based oil into renewable jet fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. Khairul Azly Zahan & Manabu Kano, 2018. "Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review," Energies, MDPI, vol. 11(8), pages 1-25, August.
    14. Hwai Chyuan Ong & M. Mofijur & A.S. Silitonga & D. Gumilang & Fitranto Kusumo & T.M.I. Mahlia, 2020. "Physicochemical Properties of Biodiesel Synthesised from Grape Seed, Philippine Tung, Kesambi, and Palm Oils," Energies, MDPI, vol. 13(6), pages 1-14, March.
    15. Mei Yin Ong & Saifuddin Nomanbhay & Fitranto Kusumo & Raja Mohamad Hafriz Raja Shahruzzaman & Abd Halim Shamsuddin, 2021. "Modeling and Optimization of Microwave-Based Bio-Jet Fuel from Coconut Oil: Investigation of Response Surface Methodology (RSM) and Artificial Neural Network Methodology (ANN)," Energies, MDPI, vol. 14(2), pages 1-17, January.
    16. Lucía Quesada & Mónica Calero de Hoces & M. A. Martín-Lara & Germán Luzón & G. Blázquez, 2020. "Performance of Different Catalysts for the In Situ Cracking of the Oil-Waxes Obtained by the Pyrolysis of Polyethylene Film Waste," Sustainability, MDPI, vol. 12(13), pages 1-15, July.
    17. Fernandes, David M. & Squissato, André L. & Lima, Alexandre F. & Richter, Eduardo M. & Munoz, Rodrigo A.A., 2019. "Corrosive character of Moringa oleifera Lam biodiesel exposed to carbon steel under simulated storage conditions," Renewable Energy, Elsevier, vol. 139(C), pages 1263-1271.
    18. Kazemi Shariat Panahi, Hamed & Hosseinzadeh-Bandbafha, Homa & Dehhaghi, Mona & Orooji, Yasin & Mahian, Omid & Shahbeik, Hossein & Kiehbadroudinezhad, Mohammadali & Kalam, Md Abul & Karimi-Maleh, Hassa, 2024. "Nanotechnology applications in biodiesel processing and production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    19. Gómez-Castro, F.I. & Gutiérrez-Antonio, C. & Romero-Izquierdo, A.G. & May-Vázquez, M.M. & Hernández, S., 2023. "Intensified technologies for the production of triglyceride-based biofuels: Current status and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    20. Singh, Omvir & Agrawal, Ankit & Dhiman, Neha & Vempatapu, Bhanu Prasad & Chiang, Ken & Tripathi, Shailendra & Sarkar, Bipul, 2021. "Production of renewable aromatics from jatropha oil over multifunctional ZnCo/ZSM-5 catalysts," Renewable Energy, Elsevier, vol. 179(C), pages 2124-2135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1347-:d:1048206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.