IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p464-472.html
   My bibliography  Save this article

Production of bio-hydrogenated kerosene by catalytic hydrocracking from refined bleached deodorised palm/ palm kernel oils

Author

Listed:
  • Dujjanutat, Praepilas
  • Kaewkannetra, Pakawadee

Abstract

In this work, refined bleached deodorised palm oil (RPO) and palm kernel oil (PKO) obtained from palm oil refinery, were used as feedstocks to investigate the production of bio-hydrogenated kerosene (BHK) via hydrocracking reaction. A statistical tool of box-behnken design (BBD) was applied to consider the effects of reaction temperature, pressure and liquid hourly space velocity (LHSV) on biofuel production from RPO. The results revealed that the temperature was strongly significant effect on the yield and the optimal condition was found at 477 °C, 5.6 MPa and 1.5 h−1 of LHSV. Subsequently, crude biofuel was separated by fractional distillation, the biofuel yield was obtained at approximately 90% and providing 49.59% kerosene selectivity. Curiously, another feedstock of PKO which has lauric acid as the main composition whereas RPO contained palmitic and oleic acids, was used to produce BHK by using operating condition based-on RPO optimal condition. The biofuel yield derived from PKO reached at the same quantity. On the other hand, kerosene selectivity obtained was higher than in case of RPO (55.35%). However, high oxygen content was found in PKO-derived BHK, and this affected to freezing point and total acid number.

Suggested Citation

  • Dujjanutat, Praepilas & Kaewkannetra, Pakawadee, 2020. "Production of bio-hydrogenated kerosene by catalytic hydrocracking from refined bleached deodorised palm/ palm kernel oils," Renewable Energy, Elsevier, vol. 147(P1), pages 464-472.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:464-472
    DOI: 10.1016/j.renene.2019.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119313461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Guangrui & Yan, Beibei & Chen, Guanyi, 2013. "Technical review on jet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 59-70.
    2. Chuck, Christopher J. & Donnelly, Joseph, 2014. "The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene," Applied Energy, Elsevier, vol. 118(C), pages 83-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Verma, Vikas & Mishra, Ankit & Anand, Mohit & Farooqui, Saleem Akhtar & Sinha, Anil Kumar, 2022. "Catalytic hydrocracking of inedible palm stearin for the production of drop-in aviation fuel and comparison with other inedible oils," Renewable Energy, Elsevier, vol. 199(C), pages 1440-1450.
    3. Praepilas Dujjanutat & Nithinun Srihanun & Papasanee Muanruksa & James Winterburn & Pakawadee Kaewkannetra, 2023. "Transesterification and Hydrotreating Reactions of Rice Bran Oil for Bio-Hydrogenated Diesel Production," Energies, MDPI, vol. 16(3), pages 1-14, January.
    4. Gómez-Castro, F.I. & Gutiérrez-Antonio, C. & Romero-Izquierdo, A.G. & May-Vázquez, M.M. & Hernández, S., 2023. "Intensified technologies for the production of triglyceride-based biofuels: Current status and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Song, Miaojia & Zhang, Xinghua & Chen, Yubao & Zhang, Qi & Chen, Lungang & Liu, Jianguo & Ma, Longlong, 2023. "Hydroprocessing of lipids: An effective production process for sustainable aviation fuel," Energy, Elsevier, vol. 283(C).
    6. Singh, Omvir & Agrawal, Ankit & Dhiman, Neha & Vempatapu, Bhanu Prasad & Chiang, Ken & Tripathi, Shailendra & Sarkar, Bipul, 2021. "Production of renewable aromatics from jatropha oil over multifunctional ZnCo/ZSM-5 catalysts," Renewable Energy, Elsevier, vol. 179(C), pages 2124-2135.
    7. Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "Direct conversion of glyceride-based oil into renewable jet fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    2. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
    3. Cremonez, Paulo André & Feroldi, Michael & de Araújo, Amanda Viana & Negreiros Borges, Maykon & Weiser Meier, Thompson & Feiden, Armin & Gustavo Teleken, Joel, 2015. "Biofuels in Brazilian aviation: Current scenario and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1063-1072.
    4. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    5. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    6. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
    8. Thowayeb H. Hassan & Abu Elnasr E. Sobaih & Amany E. Salem, 2021. "Factors Affecting the Rate of Fuel Consumption in Aircrafts," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    9. Donoso, David & Bolonio, David & Ballesteros, Rosario & Lapuerta, Magín & Canoira, Laureano, 2022. "Hydrogenated orange oil: A waste derived drop-in biojet fuel," Renewable Energy, Elsevier, vol. 188(C), pages 1049-1058.
    10. Verma, Vikas & Mishra, Ankit & Anand, Mohit & Farooqui, Saleem Akhtar & Sinha, Anil Kumar, 2022. "Catalytic hydrocracking of inedible palm stearin for the production of drop-in aviation fuel and comparison with other inedible oils," Renewable Energy, Elsevier, vol. 199(C), pages 1440-1450.
    11. Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
    12. Varsha K. Singh & Sapana Jha & Palak Rana & Renu Soni & Rowland Lalnunpuii & Prashant K. Singh & Rajeshwar P. Sinha & Garvita Singh, 2024. "Cyanobacteria as a Biocatalyst for Sustainable Production of Biofuels and Chemicals," Energies, MDPI, vol. 17(2), pages 1-25, January.
    13. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    14. Zang, Xiaoya & Wan, Lihua & He, Yong & Liang, Deqing, 2020. "CO2 removal from synthesized ternary gas mixtures used hydrate formation with sodium dodecyl sulfate(SDS) as additive," Energy, Elsevier, vol. 190(C).
    15. Dossow, Marcel & Dieterich, Vincent & Hanel, Andreas & Spliethoff, Hartmut & Fendt, Sebastian, 2021. "Improving carbon efficiency for an advanced Biomass-to-Liquid process using hydrogen and oxygen from electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Barbera, Elena & Naurzaliyev, Rustem & Asiedu, Alexander & Bertucco, Alberto & Resurreccion, Eleazer P. & Kumar, Sandeep, 2020. "Techno-economic analysis and life-cycle assessment of jet fuels production from waste cooking oil via in situ catalytic transfer hydrogenation," Renewable Energy, Elsevier, vol. 160(C), pages 428-449.
    17. Praepilas Dujjanutat & Arthit Neramittagapong & Pakawadee Kaewkannetra, 2019. "Optimization of Bio-Hydrogenated Kerosene from Refined Palm Oil by Catalytic Hydrocracking," Energies, MDPI, vol. 12(16), pages 1-15, August.
    18. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Life cycle energy and environmental impacts of hydroprocessed renewable jet fuel production from pennycress," Applied Energy, Elsevier, vol. 297(C).
    19. Carlo Pastore & Valeria D’Ambrosio, 2021. "Intensification of Processes for the Production of Ethyl Levulinate Using AlCl 3 ·6H 2 O," Energies, MDPI, vol. 14(5), pages 1-11, February.
    20. Wang, Wei-Cheng & Liu, Yu-Cheng & Nugroho, Rusdan Aditya Aji, 2022. "Techno-economic analysis of renewable jet fuel production: The comparison between Fischer-Tropsch synthesis and pyrolysis," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:464-472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.