IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v290y2021ics0306261921002646.html
   My bibliography  Save this article

Artificial intelligence to support the integration of variable renewable energy sources to the power system

Author

Listed:
  • Boza, Pal
  • Evgeniou, Theodoros

Abstract

The power sector is increasingly relying on variable renewable energy sources (VRE) whose share in energy production is expected to further increase. A key challenge for adopting these energy sources is their high integration costs. Artificial intelligence (AI) solutions and data-intensive technologies are already used in different parts of the electricity value chain and, due to the growing complexity and data generation potential of the future smart grid, have the potential to create significant value in the system. However, different uncertainties or lack of understanding about its impact often hinder the commitment of decision makers to invest in AI and data intensive technologies, also in the energy sector. While previous work has outlined a number of ways AI solutions can be used in the power sector, the goal of this article is to consider the value creation potential of AI in terms of managing VRE integration costs. We use an economic model of variable renewable integration cost from the literature to present a systematic review of how AI can decrease substantial integration costs. We review a number of use cases and discuss challenges estimating the value creation of AI solutions in the power sector.

Suggested Citation

  • Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002646
    DOI: 10.1016/j.apenergy.2021.116754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921002646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khokhar, Suhail & Mohd Zin, Abdullah Asuhaimi B. & Mokhtar, Ahmad Safawi B. & Pesaran, Mahmoud, 2015. "A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1650-1663.
    2. Kempitiya, Thimal & Sierla, Seppo & De Silva, Daswin & Yli-Ojanperä, Matti & Alahakoon, Damminda & Vyatkin, Valeriy, 2020. "An Artificial Intelligence framework for bidding optimization with uncertainty in multiple frequency reserve markets," Applied Energy, Elsevier, vol. 280(C).
    3. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    4. van der Veen, Reinier A.C. & Hakvoort, Rudi A., 2016. "The electricity balancing market: Exploring the design challenge," Utilities Policy, Elsevier, vol. 43(PB), pages 186-194.
    5. Zhou, Yuekuan & Zheng, Siqian, 2020. "Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities," Applied Energy, Elsevier, vol. 262(C).
    6. McPherson, Madeleine & Johnson, Nils & Strubegger, Manfred, 2018. "The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions," Applied Energy, Elsevier, vol. 216(C), pages 649-661.
    7. Chen, Min & Gao, Ciwei & Song, Meng & Chen, Songsong & Li, Dezhi & Liu, Qiang, 2020. "Internet data centers participating in demand response: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    8. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    9. Lu, Renzhi & Hong, Seung Ho & Zhang, Xiongfeng, 2018. "A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach," Applied Energy, Elsevier, vol. 220(C), pages 220-230.
    10. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    11. Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
    12. Clara F. Heuberger & Iain Staffell & Nilay Shah & Niall Mac Dowell, 2018. "Impact of myopic decision-making and disruptive events in power systems planning," Nature Energy, Nature, vol. 3(8), pages 634-640, August.
    13. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    14. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    15. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    16. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    17. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    18. Fast, M. & Palmé, T., 2010. "Application of artificial neural networks to the condition monitoring and diagnosis of a combined heat and power plant," Energy, Elsevier, vol. 35(2), pages 1114-1120.
    19. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    20. Pallonetto, Fabiano & De Rosa, Mattia & Milano, Federico & Finn, Donal P., 2019. "Demand response algorithms for smart-grid ready residential buildings using machine learning models," Applied Energy, Elsevier, vol. 239(C), pages 1265-1282.
    21. Kow, Ken Weng & Wong, Yee Wan & Rajkumar, Rajparthiban Kumar & Rajkumar, Rajprasad Kumar, 2016. "A review on performance of artificial intelligence and conventional method in mitigating PV grid-tied related power quality events," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 334-346.
    22. Raza, Muhammad Qamar & Khosravi, Abbas, 2015. "A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1352-1372.
    23. Robu, Valentin & Chalkiadakis, Georgios & Kota, Ramachandra & Rogers, Alex & Jennings, Nicholas R., 2016. "Rewarding cooperative virtual power plant formation using scoring rules," Energy, Elsevier, vol. 117(P1), pages 19-28.
    24. Shukhobodskiy, Alexander Alexandrovich & Colantuono, Giuseppe, 2020. "RED WoLF: Combining a battery and thermal energy reservoirs as a hybrid storage system," Applied Energy, Elsevier, vol. 274(C).
    25. Simone Sperati & Stefano Alessandrini & Pierre Pinson & George Kariniotakis, 2015. "The “Weather Intelligence for Renewable Energies” Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation," Energies, MDPI, vol. 8(9), pages 1-26, September.
    26. Shine, P. & Scully, T. & Upton, J. & Murphy, M.D., 2019. "Annual electricity consumption prediction and future expansion analysis on dairy farms using a support vector machine," Applied Energy, Elsevier, vol. 250(C), pages 1110-1119.
    27. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    28. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    29. Rocha, Helder R.O. & Honorato, Icaro H. & Fiorotti, Rodrigo & Celeste, Wanderley C. & Silvestre, Leonardo J. & Silva, Jair A.L., 2021. "An Artificial Intelligence based scheduling algorithm for demand-side energy management in Smart Homes," Applied Energy, Elsevier, vol. 282(PA).
    30. Javed, Fahad & Arshad, Naveed & Wallin, Fredrik & Vassileva, Iana & Dahlquist, Erik, 2012. "Forecasting for demand response in smart grids: An analysis on use of anthropologic and structural data and short term multiple loads forecasting," Applied Energy, Elsevier, vol. 96(C), pages 150-160.
    31. de Sisternes, Fernando J. & Jenkins, Jesse D. & Botterud, Audun, 2016. "The value of energy storage in decarbonizing the electricity sector," Applied Energy, Elsevier, vol. 175(C), pages 368-379.
    32. Hirth, Lion & Ziegenhagen, Inka, 2015. "Balancing power and variable renewables: Three links," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1035-1051.
    33. Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
    34. Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
    35. Joos, Michael & Staffell, Iain, 2018. "Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 45-65.
    36. Oh, Seok Hwa & Yoon, Yong Tae & Kim, Seung Wan, 2020. "Online reconfiguration scheme of self-sufficient distribution network based on a reinforcement learning approach," Applied Energy, Elsevier, vol. 280(C).
    37. Behl, Madhur & Smarra, Francesco & Mangharam, Rahul, 2016. "DR-Advisor: A data-driven demand response recommender system," Applied Energy, Elsevier, vol. 170(C), pages 30-46.
    38. Saxena, Harshit & Aponte, Omar & McConky, Katie T., 2019. "A hybrid machine learning model for forecasting a billing period’s peak electric load days," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1288-1303.
    39. Weitzel, Timm & Glock, C. H., 2018. "Energy Management for Stationary Electric Energy Storage Systems: A Systematic Literature Review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 88880, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    40. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    41. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    42. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2020. "Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization," Applied Energy, Elsevier, vol. 271(C).
    43. Varun Rai & Adam Douglas Henry, 2016. "Agent-based modelling of consumer energy choices," Nature Climate Change, Nature, vol. 6(6), pages 556-562, June.
    44. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    45. Ellen Webborn & Tadj Oreszczyn, 2019. "Champion the energy data revolution," Nature Energy, Nature, vol. 4(8), pages 624-626, August.
    46. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    47. Ni, Jiacheng & Bai, Xuelian, 2017. "A review of air conditioning energy performance in data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 625-640.
    48. Khaqqi, Khamila Nurul & Sikorski, Janusz J. & Hadinoto, Kunn & Kraft, Markus, 2018. "Incorporating seller/buyer reputation-based system in blockchain-enabled emission trading application," Applied Energy, Elsevier, vol. 209(C), pages 8-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wiesheu, Michael & Rutešić, Luka & Shukhobodskiy, Alexander Alexandrovich & Pogarskaia, Tatiana & Zaitcev, Aleksandr & Colantuono, Giuseppe, 2021. "RED WoLF hybrid storage system: Adaptation of algorithm and analysis of performance in residential dwellings," Renewable Energy, Elsevier, vol. 179(C), pages 1036-1048.
    2. Chao-Chung Hsu & Bi-Hai Jiang & Chun-Cheng Lin, 2023. "A Survey on Recent Applications of Artificial Intelligence and Optimization for Smart Grids in Smart Manufacturing," Energies, MDPI, vol. 16(22), pages 1-15, November.
    3. Bin Li & Yuxiang Tan & Qingqing Guo & Weihuan Wang, 2023. "Application of Comprehensive Evaluation of Line Loss Lean Management Based on Big-Data-Driven Paradigm," Sustainability, MDPI, vol. 15(15), pages 1-21, August.
    4. Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Zhao, Guanjia & Ma, Suxia, 2023. "Data-driven modeling-based digital twin of supercritical coal-fired boiler for metal temperature anomaly detection," Energy, Elsevier, vol. 278(PA).
    5. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    6. Yin, Linfei & Zhou, Hang, 2024. "Modal decomposition integrated model for ultra-supercritical coal-fired power plant reheater tube temperature multi-step prediction," Energy, Elsevier, vol. 292(C).
    7. Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    8. Zhang, Xiaojing & Khan, Khalid & Shao, Xuefeng & Oprean-Stan, Camelia & Zhang, Qian, 2024. "The rising role of artificial intelligence in renewable energy development in China," Energy Economics, Elsevier, vol. 132(C).
    9. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    10. Latifa A. Yousef & Hibba Yousef & Lisandra Rocha-Meneses, 2023. "Artificial Intelligence for Management of Variable Renewable Energy Systems: A Review of Current Status and Future Directions," Energies, MDPI, vol. 16(24), pages 1-27, December.
    11. Zulfiqar, M. & Kamran, M. & Rasheed, M.B. & Alquthami, T. & Milyani, A.H., 2023. "A hybrid framework for short term load forecasting with a navel feature engineering and adaptive grasshopper optimization in smart grid," Applied Energy, Elsevier, vol. 338(C).
    12. Iorgovan Daniela, 2024. "Artificial Intelligence and Renewable Energy Utilization," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 2776-2783.
    13. Thangjam, Aditya & Jaipuria, Sanjita & Dadabada, Pradeep Kumar, 2023. "Time-Varying approaches for Long-Term Electric Load Forecasting under economic shocks," Applied Energy, Elsevier, vol. 333(C).
    14. He, Huizi & Sun, Mei & Li, Xiuming & Mensah, Isaac Adjei, 2022. "A novel crude oil price trend prediction method: Machine learning classification algorithm based on multi-modal data features," Energy, Elsevier, vol. 244(PA).
    15. Urom, Christian & Ndubuisi, Gideon & Guesmi, Khaled & Benkraien, Ramzi, 2022. "Quantile co-movement and dependence between energy-focused sectors and artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    16. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    17. Chen, Yang & Cheng, Liang & Lee, Chien-Chiang, 2022. "How does the use of industrial robots affect the ecological footprint? International evidence," Ecological Economics, Elsevier, vol. 198(C).
    18. Sun, Lingyun & Yin, Jiemin & Bilal, Ahmad Raza, 2023. "Green financing and wind power energy generation: Empirical insights from China," Renewable Energy, Elsevier, vol. 206(C), pages 820-827.
    19. Ferahtia, Seydali & Rezk, Hegazy & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal techno-economic energy management strategy for building’s microgrids based bald eagle search optimization algorithm," Applied Energy, Elsevier, vol. 306(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    3. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    6. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    7. Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.
    8. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    9. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    10. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    11. Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer, 2016. "Why Wind Is Not Coal: On the Economics of Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    12. Hirth, Lion, 2016. "The benefits of flexibility: The value of wind energy with hydropower," Applied Energy, Elsevier, vol. 181(C), pages 210-223.
    13. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    14. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    15. Alexis Tantet & Philippe Drobinski, 2021. "A Minimal System Cost Minimization Model for Variable Renewable Energy Integration: Application to France and Comparison to Mean-Variance Analysis," Energies, MDPI, vol. 14(16), pages 1-38, August.
    16. Chen, Hao & Gao, Xin-Ya & Liu, Jian-Yu & Zhang, Qian & Yu, Shiwei & Kang, Jia-Ning & Yan, Rui & Wei, Yi-Ming, 2020. "The grid parity analysis of onshore wind power in China: A system cost perspective," Renewable Energy, Elsevier, vol. 148(C), pages 22-30.
    17. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    18. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    19. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    20. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.