IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p916-d1034812.html
   My bibliography  Save this article

Power Hardware-in-the-Loop (PHIL): A Review to Advance Smart Inverter-Based Grid-Edge Solutions

Author

Listed:
  • Annette von Jouanne

    (Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798, USA)

  • Emmanuel Agamloh

    (Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798, USA)

  • Alex Yokochi

    (Department of Mechanical Engineering, Baylor University, Waco, TX 76798, USA)

Abstract

Over the past decade, the world’s electrical grid infrastructure has experienced rapid growth in the integration of grid-edge inverter-based distributed energy resources (DERs). This has led to operating concerns associated with reduced system inertia, stability and intermittent renewable power generation. However, advanced or “smart” inverters can provide grid services such as volt-VAR, frequency-Watt, and constant power factor capabilities to help sustain reliable grid and microgrid operations. To address the challenges and accelerate the benefits of smart inverter integration, new approaches are needed to test both the impacts of inverter-based resources (IBRs) on the grid as well as the impacts of changing grid conditions on the operation of IBRs. Power hardware-in-the-loop (PHIL) stands out as a strong testing solution, enabling a real-time simulated power system to be interfaced to hardware devices such as inverters which can be implemented to determine interactions between multiple inverters at multiple points of common coupling on the grid and microgrids. This paper presents a review of PHIL for grid and microgrid applications including recent advancements and requirements such as real-time simulators, hardware interfaces and communication and stability considerations. An illuminating case study is summarized followed by exemplary PHIL testbed developments around the world, concluding with a proposed research paradigm to advance the integration of smart grid-following and grid-forming inverters.

Suggested Citation

  • Annette von Jouanne & Emmanuel Agamloh & Alex Yokochi, 2023. "Power Hardware-in-the-Loop (PHIL): A Review to Advance Smart Inverter-Based Grid-Edge Solutions," Energies, MDPI, vol. 16(2), pages 1-27, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:916-:d:1034812
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/916/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/916/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jing & Pratt, Annabelle & Prabakar, Kumaraguru & Miller, Brian & Symko-Davies, Martha, 2021. "Development of an integrated platform for hardware-in-the-loop evaluation of microgrids prior to site commissioning," Applied Energy, Elsevier, vol. 290(C).
    2. Adam Summers & Jay Johnson & Rachid Darbali-Zamora & Clifford Hansen & Jithendar Anandan & Chad Showalter, 2020. "A Comparison of DER Voltage Regulation Technologies Using Real-Time Simulations," Energies, MDPI, vol. 13(14), pages 1-26, July.
    3. Hiroshi Kikusato & Taha Selim Ustun & Masaichi Suzuki & Shuichi Sugahara & Jun Hashimoto & Kenji Otani & Kenji Shirakawa & Rina Yabuki & Ken Watanabe & Tatsuaki Shimizu, 2020. "Microgrid Controller Testing Using Power Hardware-in-the-Loop," Energies, MDPI, vol. 13(8), pages 1-15, April.
    4. Jana Ihrens & Stefan Möws & Lennard Wilkening & Thorsten A. Kern & Christian Becker, 2021. "The Impact of Time Delays for Power Hardware-in-the-Loop Investigations," Energies, MDPI, vol. 14(11), pages 1-15, May.
    5. Szymon Racewicz & Filip Kutt & Łukasz Sienkiewicz, 2022. "Power Hardware-In-the-Loop Approach for Autonomous Power Generation System Analysis," Energies, MDPI, vol. 15(5), pages 1-14, February.
    6. Sara Anttila & Jéssica S. Döhler & Janaína G. Oliveira & Cecilia Boström, 2022. "Grid Forming Inverters: A Review of the State of the Art of Key Elements for Microgrid Operation," Energies, MDPI, vol. 15(15), pages 1-30, July.
    7. Greenwood, D.M. & Lim, K.Y. & Patsios, C. & Lyons, P.F. & Lim, Y.S. & Taylor, P.C., 2017. "Frequency response services designed for energy storage," Applied Energy, Elsevier, vol. 203(C), pages 115-127.
    8. Rachid Darbali-Zamora & Jay Johnson & Adam Summers & C. Birk Jones & Clifford Hansen & Chad Showalter, 2021. "State Estimation-Based Distributed Energy Resource Optimization for Distribution Voltage Regulation in Telemetry-Sparse Environments Using a Real-Time Digital Twin," Energies, MDPI, vol. 14(3), pages 1-21, February.
    9. Moiz Muhammad & Holger Behrends & Stefan Geißendörfer & Karsten von Maydell & Carsten Agert, 2021. "Power Hardware-in-the-Loop: Response of Power Components in Real-Time Grid Simulation Environment," Energies, MDPI, vol. 14(3), pages 1-20, January.
    10. Feng Leng & Chengxiong Mao & Dan Wang & Ranran An & Yuan Zhang & Yanjun Zhao & Linglong Cai & Jie Tian, 2018. "Applications of Digital-Physical Hybrid Real-Time Simulation Platform in Power Systems," Energies, MDPI, vol. 11(10), pages 1-17, October.
    11. Steffen Vogel & Ha Thi Nguyen & Marija Stevic & Tue Vissing Jensen & Kai Heussen & Vetrivel Subramaniam Rajkumar & Antonello Monti, 2020. "Distributed Power Hardware-in-the-Loop Testing Using a Grid-Forming Converter as Power Interface," Energies, MDPI, vol. 13(15), pages 1-24, July.
    12. Manuel Barragán-Villarejo & Francisco de Paula García-López & Alejandro Marano-Marcolini & José María Maza-Ortega, 2020. "Power System Hardware in the Loop (PSHIL): A Holistic Testing Approach for Smart Grid Technologies," Energies, MDPI, vol. 13(15), pages 1-22, July.
    13. Ron Brandl, 2017. "Operational Range of Several Interface Algorithms for Different Power Hardware-In-The-Loop Setups," Energies, MDPI, vol. 10(12), pages 1-21, November.
    14. Falko Ebe & Basem Idlbi & David E. Stakic & Shuo Chen & Christoph Kondzialka & Matthias Casel & Gerd Heilscher & Christian Seitl & Roland Bründlinger & Thomas I. Strasser, 2018. "Comparison of Power Hardware-in-the-Loop Approaches for the Testing of Smart Grid Controls," Energies, MDPI, vol. 11(12), pages 1-29, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Montoya & Ron Brandl & Keerthi Vishwanath & Jay Johnson & Rachid Darbali-Zamora & Adam Summers & Jun Hashimoto & Hiroshi Kikusato & Taha Selim Ustun & Nayeem Ninad & Estefan Apablaza-Arancibia & , 2020. "Advanced Laboratory Testing Methods Using Real-Time Simulation and Hardware-in-the-Loop Techniques: A Survey of Smart Grid International Research Facility Network Activities," Energies, MDPI, vol. 13(12), pages 1-38, June.
    2. Pedro Faria & Zita Vale, 2022. "Realistic Load Modeling for Efficient Consumption Management Using Real-Time Simulation and Power Hardware-in-the-Loop," Energies, MDPI, vol. 16(1), pages 1-15, December.
    3. Meysam Yousefzadeh & Shahin Hedayati Kia & Mohammad Hoseintabar Marzebali & Davood Arab Khaburi & Hubert Razik, 2022. "Power-Hardware-in-the-Loop for Stator Windings Asymmetry Fault Analysis in Direct-Drive PMSG-Based Wind Turbines," Energies, MDPI, vol. 15(19), pages 1-17, September.
    4. Ode Bokker & Henning Schlachter & Vanessa Beutel & Stefan Geißendörfer & Karsten von Maydell, 2022. "Reactive Power Control of a Converter in a Hardware-Based Environment Using Deep Reinforcement Learning," Energies, MDPI, vol. 16(1), pages 1-12, December.
    5. Thomas I. Strasser & Sebastian Rohjans & Graeme M. Burt, 2019. "Methods and Concepts for Designing and Validating Smart Grid Systems," Energies, MDPI, vol. 12(10), pages 1-5, May.
    6. Moiz Muhammad & Holger Behrends & Stefan Geißendörfer & Karsten von Maydell & Carsten Agert, 2021. "Power Hardware-in-the-Loop: Response of Power Components in Real-Time Grid Simulation Environment," Energies, MDPI, vol. 14(3), pages 1-20, January.
    7. Hossein Abedini & Tommaso Caldognetto & Paolo Mattavelli & Paolo Tenti, 2020. "Real-Time Validation of Power Flow Control Method for Enhanced Operation of Microgrids," Energies, MDPI, vol. 13(22), pages 1-19, November.
    8. Fabietti, Luca & Qureshi, Faran A. & Gorecki, Tomasz T. & Salzmann, Christophe & Jones, Colin N., 2018. "Multi-time scale coordination of complementary resources for the provision of ancillary services," Applied Energy, Elsevier, vol. 229(C), pages 1164-1180.
    9. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    10. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    11. Fulin Fan & Giorgio Zorzi & David Campos-Gaona & Graeme Burt & Olimpo Anaya-Lara & John Nwobu & Ander Madariaga, 2021. "Sizing and Coordination Strategies of Battery Energy Storage System Co-Located with Wind Farm: The UK Perspective," Energies, MDPI, vol. 14(5), pages 1-21, March.
    12. Albert Poulose & Soobae Kim, 2023. "Transient Stability Analysis and Enhancement Techniques of Renewable-Rich Power Grids," Energies, MDPI, vol. 16(5), pages 1-30, March.
    13. Pusceddu, Elian & Zakeri, Behnam & Castagneto Gissey, Giorgio, 2021. "Synergies between energy arbitrage and fast frequency response for battery energy storage systems," Applied Energy, Elsevier, vol. 283(C).
    14. Dario Garozzo & Giuseppe Marco Tina, 2020. "Evaluation of the Effective Active Power Reserve for Fast Frequency Response of PV with BESS Inverters Considering Reactive Power Control," Energies, MDPI, vol. 13(13), pages 1-16, July.
    15. Natascia Andrenacci & Elio Chiodo & Davide Lauria & Fabio Mottola, 2018. "Life Cycle Estimation of Battery Energy Storage Systems for Primary Frequency Regulation," Energies, MDPI, vol. 11(12), pages 1-24, November.
    16. Michał Michna & Filip Kutt & Łukasz Sienkiewicz & Roland Ryndzionek & Grzegorz Kostro & Dariusz Karkosiński & Bartłomiej Grochowski, 2020. "Mechanical-Level Hardware-In-The-Loop and Simulation in Validation Testing of Prototype Tower Crane Drives," Energies, MDPI, vol. 13(21), pages 1-25, November.
    17. Hyeongpil Bang & Dwi Riana Aryani & Hwachang Song, 2021. "Application of Battery Energy Storage Systems for Relief of Generation Curtailment in Terms of Transient Stability," Energies, MDPI, vol. 14(13), pages 1-14, June.
    18. Giuliano Rancilio & Alexandre Lucas & Evangelos Kotsakis & Gianluca Fulli & Marco Merlo & Maurizio Delfanti & Marcelo Masera, 2019. "Modeling a Large-Scale Battery Energy Storage System for Power Grid Application Analysis," Energies, MDPI, vol. 12(17), pages 1-26, August.
    19. Rachid Darbali-Zamora & Jay Johnson & Adam Summers & C. Birk Jones & Clifford Hansen & Chad Showalter, 2021. "State Estimation-Based Distributed Energy Resource Optimization for Distribution Voltage Regulation in Telemetry-Sparse Environments Using a Real-Time Digital Twin," Energies, MDPI, vol. 14(3), pages 1-21, February.
    20. Homan, Samuel & Mac Dowell, Niall & Brown, Solomon, 2021. "Grid frequency volatility in future low inertia scenarios: Challenges and mitigation options," Applied Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:916-:d:1034812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.