IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3154-d564149.html
   My bibliography  Save this article

The Impact of Time Delays for Power Hardware-in-the-Loop Investigations

Author

Listed:
  • Jana Ihrens

    (Institute for Mechatronics in Mechanics, Hamburg University of Technology, 21073 Hamburg, Germany)

  • Stefan Möws

    (Institute of Electrical Power and Energy Technology, Hamburg University of Technology, 21079 Hamburg, Germany)

  • Lennard Wilkening

    (Institute for Mechatronics in Mechanics, Hamburg University of Technology, 21073 Hamburg, Germany)

  • Thorsten A. Kern

    (Institute for Mechatronics in Mechanics, Hamburg University of Technology, 21073 Hamburg, Germany)

  • Christian Becker

    (Institute of Electrical Power and Energy Technology, Hamburg University of Technology, 21079 Hamburg, Germany)

Abstract

Power hardware-in-the-loop (PHiL) simulations provide a powerful environment in the critical process of testing new components and controllers. In this work, we aim to explain the impact of time delays in a PHiL setup and recommend how to consider them in different investigations. The general concept of PHiL, with its necessary components, is explained and the benefits compared to pure simulation and implemented field tests are presented. An example for a flexible PHiL environment is shown in form of the Power Hardware-in-the-Loop Simulation Laboratory (PHiLsLab) at TU Hamburg. In the PHiLsLab, different hardware components are used as the simulator to provide a grid interface via an amplifier system, a real-time simulator by OPAL-RT, a programmable logic controller by Bachmann, and an M-DUINO microcontroller. Benefits and limitations of the different simulators are shown using case examples of conducted investigations. Essentially, all platforms prove to be appropriate and sufficiently powerful simulators, if the time constants and complexity of the investigated case fit the simulator performance. The communication interfaces used between simulator and amplifier system differ in communication speed and delay; therefore, they have to be considered to determine the level of dynamic interactions between the simulated rest of system and the hardware under test.

Suggested Citation

  • Jana Ihrens & Stefan Möws & Lennard Wilkening & Thorsten A. Kern & Christian Becker, 2021. "The Impact of Time Delays for Power Hardware-in-the-Loop Investigations," Energies, MDPI, vol. 14(11), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3154-:d:564149
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3154/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3154/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan Montoya & Ron Brandl & Keerthi Vishwanath & Jay Johnson & Rachid Darbali-Zamora & Adam Summers & Jun Hashimoto & Hiroshi Kikusato & Taha Selim Ustun & Nayeem Ninad & Estefan Apablaza-Arancibia & , 2020. "Advanced Laboratory Testing Methods Using Real-Time Simulation and Hardware-in-the-Loop Techniques: A Survey of Smart Grid International Research Facility Network Activities," Energies, MDPI, vol. 13(12), pages 1-38, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Annette von Jouanne & Emmanuel Agamloh & Alex Yokochi, 2023. "Power Hardware-in-the-Loop (PHIL): A Review to Advance Smart Inverter-Based Grid-Edge Solutions," Energies, MDPI, vol. 16(2), pages 1-27, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuko Hirase & Yuki Ohara & Naoya Matsuura & Takeaki Yamazaki, 2021. "Dynamics Analysis Using Koopman Mode Decomposition of a Microgrid Including Virtual Synchronous Generator-Based Inverters," Energies, MDPI, vol. 14(15), pages 1-20, July.
    2. Baoling Guo & Amgad Mohamed & Seddik Bacha & Mazen Alamir & Cédric Boudinet & Julien Pouget, 2020. "Reduced-Scale Models of Variable Speed Hydro-Electric Plants for Power Hardware-in-the-Loop Real-Time Simulations," Energies, MDPI, vol. 13(21), pages 1-22, November.
    3. Ri Piao & Deok-Joo Lee & Taegu Kim, 2020. "Real-Time Pricing Scheme in Smart Grid Considering Time Preference: Game Theoretic Approach," Energies, MDPI, vol. 13(22), pages 1-19, November.
    4. Gaspar, José F. & Pinheiro, Rafael F. & Mendes, Mário J.G. C. & Kamarlouei, Mojtaba & Guedes Soares, C., 2024. "Review on hardware-in-the-loop simulation of wave energy converters and power take-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    5. Taha Selim Ustun & Shuichi Sugahara & Masaichi Suzuki & Jun Hashimoto & Kenji Otani, 2020. "Power Hardware in-the-Loop Testing to Analyze Fault Behavior of Smart Inverters in Distribution Networks," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    6. Steffen Vogel & Ha Thi Nguyen & Marija Stevic & Tue Vissing Jensen & Kai Heussen & Vetrivel Subramaniam Rajkumar & Antonello Monti, 2020. "Distributed Power Hardware-in-the-Loop Testing Using a Grid-Forming Converter as Power Interface," Energies, MDPI, vol. 13(15), pages 1-24, July.
    7. Hossein Abedini & Tommaso Caldognetto & Paolo Mattavelli & Paolo Tenti, 2020. "Real-Time Validation of Power Flow Control Method for Enhanced Operation of Microgrids," Energies, MDPI, vol. 13(22), pages 1-19, November.
    8. Yuko Hirase & Kazusa Uezaki & Dai Orihara & Hiroshi Kikusato & Jun Hashimoto, 2021. "Characteristic Analysis and Indexing of Multimachine Transient Stabilization Using Virtual Synchronous Generator Control," Energies, MDPI, vol. 14(2), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3154-:d:564149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.