IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p6896-d920365.html
   My bibliography  Save this article

Power-Hardware-in-the-Loop for Stator Windings Asymmetry Fault Analysis in Direct-Drive PMSG-Based Wind Turbines

Author

Listed:
  • Meysam Yousefzadeh

    (Center of Excellence for Power Systems Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran 1311416846, Iran)

  • Shahin Hedayati Kia

    (Laboratory MIS UR4290, University of Picardie “Jules Verne”, 33 rue St Leu, 80039 Amiens, France)

  • Mohammad Hoseintabar Marzebali

    (Department of Electrical Engineering and Robotic, Shahrood University of Technology, Shahrood 3619995161, Iran)

  • Davood Arab Khaburi

    (Center of Excellence for Power Systems Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran 1311416846, Iran)

  • Hubert Razik

    (Laboratory Ampère UMR 5005, University of Lyon, 69622 Villeurbanne, France)

Abstract

This article studies the stator windings asymmetry fault in direct-drive permanent magnet synchronous generator(PMSG)-based wind turbines (WTs), having passive converters at the generator side, through developing a power-hardware-in-the-loop (P-H-i-L) system. It is based on a digital real-time simulation (DRTS) of turbine blades, a wind generator in the abc reference frame, and a three-phase diode rectifier mathematical models. The DC voltage, provided by the model of the three-phase diode rectifier, is linked to a one-level hardware boost converter by using a programmable DC power supply. Furthermore, the maximum power point tracking technique, based on the optimal torque, is evaluated when the one-level boost converter supplies a resistive load. Stator windings asymmetry fault in the PMSG is identified by analyzing the rectifier output voltage, the rotor speed, and the electrical signatures of the boost converter. It shows that this kind of fault clearly gives rise to the amplitudes of both 2 · f s and 4 · f s frequency components in the mentioned signatures, where f s is the main frequency component of the stator current. DRTSs are compared with digital offline simulations (DoSs), based on a Matlab/Simulink Simscape physical model, to demonstrate the efficacy of the proposed framework.

Suggested Citation

  • Meysam Yousefzadeh & Shahin Hedayati Kia & Mohammad Hoseintabar Marzebali & Davood Arab Khaburi & Hubert Razik, 2022. "Power-Hardware-in-the-Loop for Stator Windings Asymmetry Fault Analysis in Direct-Drive PMSG-Based Wind Turbines," Energies, MDPI, vol. 15(19), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6896-:d:920365
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/6896/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/6896/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yun-Su Kim & Il-Yop Chung & Seung-Il Moon, 2015. "Tuning of the PI Controller Parameters of a PMSG Wind Turbine to Improve Control Performance under Various Wind Speeds," Energies, MDPI, vol. 8(2), pages 1-20, February.
    2. Jiyoung Song & Kyeon Hur & Jeehoon Lee & Hyunjae Lee & Jaegul Lee & Solyoung Jung & Jeonghoon Shin & Heejin Kim, 2020. "Hardware-in-the-Loop Simulation Using Real-Time Hybrid-Simulator for Dynamic Performance Test of Power Electronics Equipment in Large Power System," Energies, MDPI, vol. 13(15), pages 1-16, August.
    3. Markus Mirz & Jan Dinkelbach & Antonello Monti, 2020. "DPsim—Advancements in Power Electronics Modelling Using Shifted Frequency Analysis and in Real-Time Simulation Capability by Parallelization," Energies, MDPI, vol. 13(15), pages 1-20, July.
    4. Steffen Vogel & Ha Thi Nguyen & Marija Stevic & Tue Vissing Jensen & Kai Heussen & Vetrivel Subramaniam Rajkumar & Antonello Monti, 2020. "Distributed Power Hardware-in-the-Loop Testing Using a Grid-Forming Converter as Power Interface," Energies, MDPI, vol. 13(15), pages 1-24, July.
    5. Baoling Guo & Amgad Mohamed & Seddik Bacha & Mazen Alamir & Cédric Boudinet & Julien Pouget, 2020. "Reduced-Scale Models of Variable Speed Hydro-Electric Plants for Power Hardware-in-the-Loop Real-Time Simulations," Energies, MDPI, vol. 13(21), pages 1-22, November.
    6. Leonel Estrada & Nimrod Vázquez & Joaquín Vaquero & Ángel de Castro & Jaime Arau, 2020. "Real-Time Hardware in the Loop Simulation Methodology for Power Converters Using LabVIEW FPGA," Energies, MDPI, vol. 13(2), pages 1-19, January.
    7. Gao, Richie & Gao, Zhiwei, 2016. "Pitch control for wind turbine systems using optimization, estimation and compensation," Renewable Energy, Elsevier, vol. 91(C), pages 501-515.
    8. Manuel Barragán-Villarejo & Francisco de Paula García-López & Alejandro Marano-Marcolini & José María Maza-Ortega, 2020. "Power System Hardware in the Loop (PSHIL): A Holistic Testing Approach for Smart Grid Technologies," Energies, MDPI, vol. 13(15), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sisi Pan & Wei Jiang & Ming Li & Hua Geng & Jieyun Wang, 2022. "Evaluation of the Communication Delay in a Hybrid Real-Time Simulator for Weak Grids," Energies, MDPI, vol. 15(6), pages 1-16, March.
    2. Annette von Jouanne & Emmanuel Agamloh & Alex Yokochi, 2023. "Power Hardware-in-the-Loop (PHIL): A Review to Advance Smart Inverter-Based Grid-Edge Solutions," Energies, MDPI, vol. 16(2), pages 1-27, January.
    3. Chan Roh, 2022. "Deep-Learning-Based Pitch Controller for Floating Offshore Wind Turbine Systems with Compensation for Delay of Hydraulic Actuators," Energies, MDPI, vol. 15(9), pages 1-18, April.
    4. Zhao Jin & Jie Zhang & Shuyuan Wang & Bingda Zhang, 2023. "Component-Oriented Modeling Method for Real-Time Simulation of Power Systems," Energies, MDPI, vol. 16(6), pages 1-19, March.
    5. Hossein Abedini & Tommaso Caldognetto & Paolo Mattavelli & Paolo Tenti, 2020. "Real-Time Validation of Power Flow Control Method for Enhanced Operation of Microgrids," Energies, MDPI, vol. 13(22), pages 1-19, November.
    6. Xingqi Hu & Wen Tan & Guolian Hou, 2023. "PIDD2 Control of Large Wind Turbines’ Pitch Angle," Energies, MDPI, vol. 16(13), pages 1-22, July.
    7. Ruyun Cheng & Li Yao & Xinyang Yan & Bingda Zhang & Zhao Jin, 2021. "High Flexibility Hybrid Architecture Real-Time Simulation Platform Based on Field-Programmable Gate Array (FPGA)," Energies, MDPI, vol. 14(19), pages 1-16, September.
    8. Damian Liszka & Zbigniew Krzemianowski & Tomasz Węgiel & Dariusz Borkowski & Andrzej Polniak & Konrad Wawrzykowski & Artur Cebula, 2022. "Alternative Solutions for Small Hydropower Plants," Energies, MDPI, vol. 15(4), pages 1-31, February.
    9. Jaesik Kang, 2022. "Comprehensive Analysis of Transient Overvoltage Phenomena for Metal-Oxide Varistor Surge Arrester in LCC-HVDC Transmission System with Special Protection Scheme," Energies, MDPI, vol. 15(19), pages 1-17, September.
    10. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    11. Afef Fekih & Saleh Mobayen & Chih-Chiang Chen, 2021. "Adaptive Robust Fault-Tolerant Control Design for Wind Turbines Subject to Pitch Actuator Faults," Energies, MDPI, vol. 14(6), pages 1-13, March.
    12. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    13. Chih-Hong Lin, 2016. "Wind Turbine Driving a PM Synchronous Generator Using Novel Recurrent Chebyshev Neural Network Control with the Ideal Learning Rate," Energies, MDPI, vol. 9(6), pages 1-25, June.
    14. Suparak Srita & Sakda Somkun & Tanakorn Kaewchum & Wattanapong Rakwichian & Peter Zacharias & Uthen Kamnarn & Jutturit Thongpron & Damrong Amorndechaphon & Matheepot Phattanasak, 2022. "Modeling, Simulation and Development of Grid-Connected Voltage Source Converter with Selective Harmonic Mitigation: HiL and Experimental Validations," Energies, MDPI, vol. 15(7), pages 1-28, March.
    15. Hoseinzadeh, Siamak & Astiaso Garcia, Davide & Huang, Lizhen, 2023. "Grid-connected renewable energy systems flexibility in Norway islands’ Decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    16. Deepu Dilip & Fernando Porté-Agel, 2017. "Wind Turbine Wake Mitigation through Blade Pitch Offset," Energies, MDPI, vol. 10(6), pages 1-17, May.
    17. Janusz Baran & Andrzej Jąderko, 2020. "An MPPT Control of a PMSG-Based WECS with Disturbance Compensation and Wind Speed Estimation," Energies, MDPI, vol. 13(23), pages 1-20, December.
    18. Vincenzo Iannino & Valentina Colla & Mario Innocenti & Annamaria Signorini, 2017. "Design of a H ∞ Robust Controller with μ -Analysis for Steam Turbine Power Generation Applications," Energies, MDPI, vol. 10(7), pages 1-31, July.
    19. Sławomir Cieślik, 2021. "Mathematical Modeling of the Dynamics of Linear Electrical Systems with Parallel Calculations," Energies, MDPI, vol. 14(10), pages 1-23, May.
    20. Jingchun Chu & Ling Yuan & Yang Hu & Chenyang Pan & Lei Pan, 2019. "Comparative Analysis of Identification Methods for Mechanical Dynamics of Large-Scale Wind Turbine," Energies, MDPI, vol. 12(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6896-:d:920365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.