IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1107-d144045.html
   My bibliography  Save this article

Short-Term Solar Irradiance Forecasts Using Sky Images and Radiative Transfer Model

Author

Listed:
  • Juan Du

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
    Atmospheric Sciences Research Center, State University of New York, Albany, NY 12203, USA)

  • Qilong Min

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
    Atmospheric Sciences Research Center, State University of New York, Albany, NY 12203, USA)

  • Penglin Zhang

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China)

  • Jinhui Guo

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China)

  • Jun Yang

    (State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China)

  • Bangsheng Yin

    (Atmospheric Sciences Research Center, State University of New York, Albany, NY 12203, USA)

Abstract

In this paper, we propose a novel forecast method which addresses the difficulty in short-term solar irradiance forecasting that arises due to rapidly evolving environmental factors over short time periods. This involves the forecasting of Global Horizontal Irradiance (GHI) that combines prediction sky images with a Radiative Transfer Model (RTM). The prediction images (up to 10 min ahead) are produced by a non-local optical flow method, which is used to calculate the cloud motion for each pixel, with consecutive sky images at 1 min intervals. The Direct Normal Irradiance (DNI) and the diffuse radiation intensity field under clear sky and overcast conditions obtained from the RTM are then mapped to the sky images. Through combining the cloud locations on the prediction image with the corresponding instance of image-based DNI and diffuse radiation intensity fields, the GHI can be quantitatively forecasted for time horizons of 1–10 min ahead. The solar forecasts are evaluated in terms of root mean square error (RMSE) and mean absolute error (MAE) in relation to in-situ measurements and compared to the performance of the persistence model. The results of our experiment show that GHI forecasts using the proposed method perform better than the persistence model.

Suggested Citation

  • Juan Du & Qilong Min & Penglin Zhang & Jinhui Guo & Jun Yang & Bangsheng Yin, 2018. "Short-Term Solar Irradiance Forecasts Using Sky Images and Radiative Transfer Model," Energies, MDPI, vol. 11(5), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1107-:d:144045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1107/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1107/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fei Wang & Zengqiang Mi & Shi Su & Hongshan Zhao, 2012. "Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters," Energies, MDPI, vol. 5(5), pages 1-16, May.
    2. Cheng, Hsu-Yung & Yu, Chih-Chang & Lin, Sian-Jing, 2014. "Bi-model short-term solar irradiance prediction using support vector regressors," Energy, Elsevier, vol. 70(C), pages 121-127.
    3. Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "Nearest-neighbor methodology for prediction of intra-hour global horizontal and direct normal irradiances," Renewable Energy, Elsevier, vol. 80(C), pages 770-782.
    4. Philippe Lauret & Mathieu David & Hugo T. C. Pedro, 2017. "Probabilistic Solar Forecasting Using Quantile Regression Models," Energies, MDPI, vol. 10(10), pages 1-17, October.
    5. Long, Huan & Zhang, Zijun & Su, Yan, 2014. "Analysis of daily solar power prediction with data-driven approaches," Applied Energy, Elsevier, vol. 126(C), pages 29-37.
    6. Barbieri, Florian & Rajakaruna, Sumedha & Ghosh, Arindam, 2017. "Very short-term photovoltaic power forecasting with cloud modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 242-263.
    7. Chih-Chiang Wei, 2017. "Predictions of Surface Solar Radiation on Tilted Solar Panels using Machine Learning Models: A Case Study of Tainan City, Taiwan," Energies, MDPI, vol. 10(10), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Logothetis, Stavros-Andreas & Salamalikis, Vasileios & Wilbert, Stefan & Remund, Jan & Zarzalejo, Luis F. & Xie, Yu & Nouri, Bijan & Ntavelis, Evangelos & Nou, Julien & Hendrikx, Niels & Visser, Lenna, 2022. "Benchmarking of solar irradiance nowcast performance derived from all-sky imagers," Renewable Energy, Elsevier, vol. 199(C), pages 246-261.
    2. Stéphanie Monjoly & Maina André & Rudy Calif & Ted Soubdhan, 2019. "Forecast Horizon and Solar Variability Influences on the Performances of Multiscale Hybrid Forecast Model," Energies, MDPI, vol. 12(12), pages 1-20, June.
    3. Panagiotis Kosmopoulos & Dimitris Kouroutsidis & Kyriakoula Papachristopoulou & Panagiotis Ioannis Raptis & Akriti Masoom & Yves-Marie Saint-Drenan & Philippe Blanc & Charalampos Kontoes & Stelios Kaz, 2020. "Short-Term Forecasting of Large-Scale Clouds Impact on Downwelling Surface Solar Irradiation," Energies, MDPI, vol. 13(24), pages 1-22, December.
    4. Han, Tian & Li, Ruimeng & Wang, Xiao & Wang, Ying & Chen, Kang & Peng, Huaiwu & Gao, Zhenxin & Wang, Nannan & Peng, Qinke, 2024. "Intra-hour solar irradiance forecasting using topology data analysis and physics-driven deep learning," Renewable Energy, Elsevier, vol. 224(C).
    5. Shitao Wang & Mingjian Sun & Yi Shen, 2022. "Semantic Segmentation Algorithm-Based Calculation of Cloud Shadow Trajectory and Cloud Speed," Energies, MDPI, vol. 15(23), pages 1-15, November.
    6. Nunes Maciel, Joylan & Javier Gimenez Ledesma, Jorge & Hideo Ando Junior, Oswaldo, 2024. "Hybrid prediction method of solar irradiance applied to short-term photovoltaic energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Lin, Fan & Zhang, Yao & Wang, Jianxue, 2023. "Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods," International Journal of Forecasting, Elsevier, vol. 39(1), pages 244-265.
    8. Manoel Henriques de Sá Campos & Chigueru Tiba, 2020. "Global Horizontal Irradiance Modeling for All Sky Conditions Using an Image-Pixel Approach," Energies, MDPI, vol. 13(24), pages 1-15, December.
    9. Si, Zhiyuan & Yang, Ming & Yu, Yixiao & Ding, Tingting, 2021. "Photovoltaic power forecast based on satellite images considering effects of solar position," Applied Energy, Elsevier, vol. 302(C).
    10. Youssef Karout & Axel Curcio & Julien Eynard & Stéphane Thil & Sylvain Rodat & Stéphane Abanades & Valéry Vuillerme & Stéphane Grieu, 2023. "Model-Based Predictive Control of a Solar Hybrid Thermochemical Reactor for High-Temperature Steam Gasification of Biomass," Clean Technol., MDPI, vol. 5(1), pages 1-23, March.
    11. Myeongchan Oh & Chang Ki Kim & Boyoung Kim & Changyeol Yun & Yong-Heack Kang & Hyun-Goo Kim, 2021. "Spatiotemporal Optimization for Short-Term Solar Forecasting Based on Satellite Imagery," Energies, MDPI, vol. 14(8), pages 1-18, April.
    12. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Larson, David P. & Nonnenmacher, Lukas & Coimbra, Carlos F.M., 2016. "Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest," Renewable Energy, Elsevier, vol. 91(C), pages 11-20.
    2. Chih-Chiang Wei, 2019. "Evaluation of Photovoltaic Power Generation by Using Deep Learning in Solar Panels Installed in Buildings," Energies, MDPI, vol. 12(18), pages 1-18, September.
    3. Wen, Yan & Pan, Su & Li, Xinxin & Li, Zibo & Wen, Wuzhenghong, 2024. "Improving multi-site photovoltaic forecasting with relevance amplification: DeepFEDformer-based approach," Energy, Elsevier, vol. 299(C).
    4. Chao-Rong Chen & Unit Three Kartini, 2017. "k-Nearest Neighbor Neural Network Models for Very Short-Term Global Solar Irradiance Forecasting Based on Meteorological Data," Energies, MDPI, vol. 10(2), pages 1-18, February.
    5. Antonello Rosato & Rosa Altilio & Rodolfo Araneo & Massimo Panella, 2017. "Prediction in Photovoltaic Power by Neural Networks," Energies, MDPI, vol. 10(7), pages 1-25, July.
    6. Zheng, Lingwei & Liu, Zhaokun & Shen, Junnan & Wu, Chenxi, 2018. "Very short-term maximum Lyapunov exponent forecasting tool for distributed photovoltaic output," Applied Energy, Elsevier, vol. 229(C), pages 1128-1139.
    7. Lin, Fan & Zhang, Yao & Wang, Jianxue, 2023. "Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods," International Journal of Forecasting, Elsevier, vol. 39(1), pages 244-265.
    8. Kamadinata, Jane Oktavia & Ken, Tan Lit & Suwa, Tohru, 2019. "Sky image-based solar irradiance prediction methodologies using artificial neural networks," Renewable Energy, Elsevier, vol. 134(C), pages 837-845.
    9. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    10. Ferlito, S. & Adinolfi, G. & Graditi, G., 2017. "Comparative analysis of data-driven methods online and offline trained to the forecasting of grid-connected photovoltaic plant production," Applied Energy, Elsevier, vol. 205(C), pages 116-129.
    11. Guilherme Fonseca Bassous & Rodrigo Flora Calili & Carlos Hall Barbosa, 2021. "Development of a Low-Cost Data Acquisition System for Very Short-Term Photovoltaic Power Forecasting," Energies, MDPI, vol. 14(19), pages 1-28, September.
    12. Elena Collino & Dario Ronzio, 2021. "Exploitation of a New Short-Term Multimodel Photovoltaic Power Forecasting Method in the Very Short-Term Horizon to Derive a Multi-Time Scale Forecasting System," Energies, MDPI, vol. 14(3), pages 1-30, February.
    13. Chu, Yinghao & Li, Mengying & Coimbra, Carlos F.M., 2016. "Sun-tracking imaging system for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 96(PA), pages 792-799.
    14. Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.
    15. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    16. Daxini, Rajiv & Wu, Yupeng, 2024. "Review of methods to account for the solar spectral influence on photovoltaic device performance," Energy, Elsevier, vol. 286(C).
    17. Javier López Gómez & Ana Ogando Martínez & Francisco Troncoso Pastoriza & Lara Febrero Garrido & Enrique Granada Álvarez & José Antonio Orosa García, 2020. "Photovoltaic Power Prediction Using Artificial Neural Networks and Numerical Weather Data," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    18. Mohanty, Sthitapragyan & Patra, Prashanta K. & Sahoo, Sudhansu S. & Mohanty, Asit, 2017. "Forecasting of solar energy with application for a growing economy like India: Survey and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 539-553.
    19. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    20. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1107-:d:144045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.