IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7473-d1275680.html
   My bibliography  Save this article

AAEM Species Migration/Transformation during Co-Combustion of Carbonaceous Feedstocks and Synergy Behavior on Co-Combustion Reactivity: A Critical Review

Author

Listed:
  • Yue Jiao

    (Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Lina Tian

    (Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Shu Yu

    (Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Xudong Song

    (State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China)

  • Zhiliang Wu

    (Discipline of Chemical Engineering, Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6845, Australia)

  • Juntao Wei

    (Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
    State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
    Marssenger Kitchenware Co., Ltd., Jiaxing 314400, China)

  • Jie Xu

    (Laboratory of Reaction and Separation Technology, Qingdao Agricultural University, Qingdao 266109, China)

Abstract

Co-combustion is a crucial route for the high-efficiency utilization and clean conversion of different carbonaceous feedstocks (biomass, coal, petroleum coke, etc.). The migration and transformation of alkali and alkaline earth metals (AAEMs) are not only related to ash-related issues in actual application, but also directly affect the reaction behavior of binary particles during co-conversion. This review paper summarizes research progress in the detection methods (online and offline) and influencing factors (feedstock type, feedstock blending ratio, reaction temperature, reaction time) of AAEMs migration and transformation during the co-combustion of carbonaceous feedstocks. Furthermore, it provides a detailed summary of research progress on factors (feedstock blending ratio, heating rate, etc.) influencing the co-combustion reactivity of carbonaceous feedstocks, synergy behavior, and its mechanisms. The influence of feedstock type on AAEMs migration and transformation during co-combustion is mainly related to the composition categories, chemical forms and contents of intrinsic mineral in binary feedstocks. The increase in the combustion temperature will intensify the release of inherent AAEMs in carbonaceous feedstocks, and promote AAEM deactivation. For high K and Cl-containing biomass, a higher biomass proportion in blends would result in more AAEMs release during the co-combustion process. Conversely, an increase in coal proportion in blends will directly favor the reduction or inhibition of AAEMs release. Synergy behavior during co-pyrolysis and subsequent char co-combustion is usually presented as an inhibition effect and an synergistic effect, respectively. The synergistic mechanisms of carbonaceous feedstock co-combustion reactions can be divided into two categories: non-catalytic synergistic mechanisms related to the excitation and migration of biomass-based free radicals and catalytic synergistic mechanisms related to biomass-based AAEMs catalysis. Additionally, future research prospects are also proposed based on the systematic review.

Suggested Citation

  • Yue Jiao & Lina Tian & Shu Yu & Xudong Song & Zhiliang Wu & Juntao Wei & Jie Xu, 2023. "AAEM Species Migration/Transformation during Co-Combustion of Carbonaceous Feedstocks and Synergy Behavior on Co-Combustion Reactivity: A Critical Review," Energies, MDPI, vol. 16(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7473-:d:1275680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7473/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7473/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Chengheng & Liu, Hao & Lester, Edward & Wu, Tao, 2020. "In-situ monitoring of the transformation of ash upon heating and the prediction of ash fusion behaviour of coal/biomass blends," Energy, Elsevier, vol. 199(C).
    2. Qi, Jianhui & Li, Hui & Han, Kuihua & Zuo, Qi & Gao, Jie & Wang, Qian & Lu, Chunmei, 2016. "Influence of ammonium dihydrogen phosphate on potassium retention and ash melting characteristics during combustion of biomass," Energy, Elsevier, vol. 102(C), pages 244-251.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Jianhui Qi & Haopeng Li & Qian Wang & Kuihua Han, 2021. "Combustion Characteristics, Kinetics, SO 2 and NO Release of Low-Grade Biomass Materials and Briquettes," Energies, MDPI, vol. 14(9), pages 1-13, May.
    3. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.
    4. Wang, Qian & Han, Kuihua & Wang, Peifu & Li, Shijie & Zhang, Mingyang, 2020. "Influence of additive on ash and combustion characteristics during biomass combustion under O2/CO2 atmosphere," Energy, Elsevier, vol. 195(C).
    5. Reinmöller, Markus & Schreiner, Marcus & Laabs, Marcel & Scharm, Christoph & Yao, Zhitong & Guhl, Stefan & Neuroth, Manuela & Meyer, Bernd & Gräbner, Martin, 2023. "Formation and transformation of mineral phases in biomass ashes and evaluation of the feedstocks for application in high-temperature processes," Renewable Energy, Elsevier, vol. 210(C), pages 627-639.
    6. Li, Fenghai & Zhao, Chaoyue & Fan, Hongli & Xu, Meiling & Guo, Qianqian & Li, Yang & Wu, Lishun & Wang, Tao & Fang, Yitian, 2022. "Ash fusion behaviors of sugarcane bagasse and its modification with sewage sludge addition," Energy, Elsevier, vol. 251(C).
    7. Ziqiang Yang & Fenghai Li & Mingjie Ma & Xuefei Liu & Hongli Fan & Zhenzhu Li & Yong Wang & Yitian Fang, 2023. "Regulation Mechanism of Solid Waste on Ash Fusion Characteristics of Sorghum Straw under O 2 /CO 2 Atmosphere," Energies, MDPI, vol. 16(20), pages 1-17, October.
    8. Adeleke, Adekunle A. & Ikubanni, Peter P. & Emmanuel, Stephen S. & Fajobi, Moses O. & Nwachukwu, Praise & Adesibikan, Ademidun A. & Odusote, Jamiu K. & Adeyemi, Emmanuel O. & Abioye, Oluwaseyi M. & Ok, 2024. "A comprehensive review on the similarity and disparity of torrefied biomass and coal properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    9. Li, Fenghai & Yang, Ziqiang & Li, Yang & Han, Guopeng & Fan, Hongli & Liu, Xuefei & Xu, Meiling & Guo, Mingxi & Fang, Yitian, 2023. "The effects of Na2O/K2O flux on ash fusion characteristics for high silicon-aluminum coal in entrained-flow bed gasification," Energy, Elsevier, vol. 282(C).
    10. Zhu, Hongqing & Liao, Qi & Hu, Lintao & Xie, Linhao & Qu, Baolin & Gao, Rongxiang, 2023. "Effect of removal of alkali and alkaline earth metals in cornstalk on slagging/fouling and co-combustion characteristics of cornstalk/coal blends for biomass applications," Renewable Energy, Elsevier, vol. 207(C), pages 275-285.
    11. Li, Fenghai & Zhou, Meijie & zhao, Wei & Liu, Xuefei & Yang, Ziqiang & Fan, Hongli & Han, Guopeng & Li, Junguo & Xu, Meiling & Fang, Yitian, 2024. "Ash fusion behavior modification mechanisms of high-calcium coal by coal blending and its ash viscosity predication," Energy, Elsevier, vol. 288(C).
    12. Zhang, Heng & Li, Junguo & Yang, Xin & Song, Shuangshuang & Wang, Zhiqing & Huang, Jiejie & Zhang, Yongqi & Fang, Yitian, 2020. "Influence of coal ash on CO2 gasification reactivity of corn stalk char," Renewable Energy, Elsevier, vol. 147(P1), pages 2056-2063.
    13. Jiang, Jiahao & Tie, Yuan & Deng, Lei & Che, Defu, 2022. "Influence of water-washing pretreatment on ash fusibility of biomass," Renewable Energy, Elsevier, vol. 200(C), pages 125-135.
    14. Hariana, & Putra, Hanafi Prida & Prabowo, & Hilmawan, Edi & Darmawan, Arif & Mochida, Keiichi & Aziz, Muhammad, 2023. "Theoretical and experimental investigation of ash-related problems during coal co-firing with different types of biomass in a pulverized coal-fired boiler," Energy, Elsevier, vol. 269(C).
    15. Aamer Bilal Asghar & Saad Farooq & Muhammad Shahzad Khurram & Mujtaba Hussain Jaffery & Krzysztof Ejsmont, 2021. "Estimation of the Solid Circulation Rate in Circulating Fluidized Bed System Using Adaptive Neuro-Fuzzy Algorithm," Energies, MDPI, vol. 15(1), pages 1-17, December.
    16. Li, Fenghai & Li, Yang & Fan, Hongli & Wang, Tao & Guo, Mingxi & Fang, Yitian, 2019. "Investigation on fusion characteristics of deposition from biomass vibrating grate furnace combustion and its modification," Energy, Elsevier, vol. 174(C), pages 724-734.
    17. Zhang, Heng & Hao, Zhenhua & Li, Junguo & Yang, Xin & Wang, Zhiqing & Liu, Zheyu & Huang, Jiejie & Zhang, Yongqi & Fang, Yitian, 2021. "Effect of coal ash additive on potassium fixation and melting behaviors of the mixture under simulated biomass gasification condition," Renewable Energy, Elsevier, vol. 168(C), pages 806-814.
    18. Wang, Qian & Han, Kuihua & Wang, Jiamin & Gao, Jie & Lu, Chunmei, 2017. "Influence of phosphorous based additives on ash melting characteristics during combustion of biomass briquette fuel," Renewable Energy, Elsevier, vol. 113(C), pages 428-437.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7473-:d:1275680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.