IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224020905.html
   My bibliography  Save this article

Slagging tendency analysis and evaluation of biomass and coal during co-firing

Author

Listed:
  • Chen, Chunxiang
  • Li, Bingjie
  • He, Lihui
  • Wei, Guangsheng
  • Qin, Shuo

Abstract

Co-firing of biomass and coal may cause slagging and fouling and impact the operational lifespan of the boilers. In this paper, eucalyptus bark (EB) and four kinds of coal were used as raw materials, and the degree of slagging was experimentally investigated by scanning electron microscope (SEM), X-ray fluorescence (XRF), and X-ray diffraction (XRD). Moreover, the technique for order preference by similarity to ideal solution (TOPSIS) method and the entropy weight (EW) method were used to establish a slagging evaluation model E-TOPSIS. The results showed that the co-firing of EB and coal caused an increase in ash particle size, particle sintering, and adhesion. XRD analysis confirmed that EB promoted the reaction of calcium compounds with quartz and enhanced the diffraction intensity of muscovite, anorthite, and calcite. The evaluation results of the E-TOPSIS showed that the slagging tendency of EB, IC, and ICEB was severe, which is aligned with the experimental results, and proves the accuracy of this method. The research results can provide a reference for predicting the slagging tendency of biomass and coal during co-firing.

Suggested Citation

  • Chen, Chunxiang & Li, Bingjie & He, Lihui & Wei, Guangsheng & Qin, Shuo, 2024. "Slagging tendency analysis and evaluation of biomass and coal during co-firing," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020905
    DOI: 10.1016/j.energy.2024.132316
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224020905
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.