IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6743-d1244691.html
   My bibliography  Save this article

Enhancing the Fuel Efficiency of Cogeneration Plants by Fuel Oil Afterburning in Exhaust Gas before Boilers

Author

Listed:
  • Victoria Kornienko

    (Machinebuilding Institute, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine)

  • Mykola Radchenko

    (Machinebuilding Institute, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine)

  • Andrii Radchenko

    (Machinebuilding Institute, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine)

  • Hanna Koshlak

    (Department of Building Physics and Renewable Energy, Kielce University of Technology, Aleja Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland)

  • Roman Radchenko

    (Machinebuilding Institute, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine)

Abstract

Cogeneration or combined heat and power (CHP) has found wide application in various industries because it very effectively meets the growing demand for electricity, steam, hot water, and also has a number of operational, environmental, economic advantages over traditional electrical and thermal systems. Experimental and theoretical investigations of the afterburning of fuel oil in the combustion engine exhaust gas at the boiler inlet were carried out in order to enhance the efficiency of cogeneration power plants; this was achieved by increasing the boiler steam capacity, resulting in reduced production of waste heat and exhaust emissions. The afterburning of fuel oil in the exhaust gas of diesel engines is possible due to a high the excess air ratio (three to four). Based on the experimental data of the low-temperature corrosion of the gas boiler condensing heat exchange surfaces, the admissible values of corrosion rate and the lowest exhaust gas temperature which provide deep exhaust gas heat utilization and high efficiency of the exhaust gas boiler were obtained. The use of WFE and afterburning fuel oil provides an increase in efficiency and power of the CPPs based on diesel engines of up to 5% due to a decrease in the exhaust gas temperature at the outlet of the EGB from 150 °C to 90 °C and waste heat, accordingly. The application of efficient environmentally friendly exhaust gas boilers with low-temperature condensing surfaces can be considered a new and prosperous trend in diesel engine exhaust gas heat utilization through the afterburning of fuel oil and in CPPs as a whole.

Suggested Citation

  • Victoria Kornienko & Mykola Radchenko & Andrii Radchenko & Hanna Koshlak & Roman Radchenko, 2023. "Enhancing the Fuel Efficiency of Cogeneration Plants by Fuel Oil Afterburning in Exhaust Gas before Boilers," Energies, MDPI, vol. 16(18), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6743-:d:1244691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6743/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6743/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fahid Riaz & Kah Hoe Tan & Muhammad Farooq & Muhammad Imran & Poh Seng Lee, 2020. "Energy Analysis of a Novel Ejector-Compressor Cooling Cycle Driven by Electricity and Heat (Waste Heat or Solar Energy)," Sustainability, MDPI, vol. 12(19), pages 1-21, October.
    2. Zongming Yang & Mykola Radchenko & Andrii Radchenko & Dariusz Mikielewicz & Roman Radchenko, 2022. "Gas Turbine Intake Air Hybrid Cooling Systems and a New Approach to Their Rational Designing," Energies, MDPI, vol. 15(4), pages 1-18, February.
    3. Andrii Radchenko & Mykola Radchenko & Dariusz Mikielewicz & Anatoliy Pavlenko & Roman Radchenko & Serhiy Forduy, 2022. "Energy Saving in Trigeneration Plant for Food Industries," Energies, MDPI, vol. 15(3), pages 1-14, February.
    4. Zongming Yang & Victoria Kornienko & Mykola Radchenko & Andrii Radchenko & Roman Radchenko, 2022. "Research of Exhaust Gas Boiler Heat Exchange Surfaces with Reduced Corrosion When Water-Fuel Emulsion Combustion," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    5. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    6. Wang, Shukun & Zhang, Lu & Liu, Chao & Liu, Zuming & Lan, Song & Li, Qibin & Wang, Xiaonan, 2021. "Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery," Energy, Elsevier, vol. 231(C).
    7. Zongming Yang & Volodymyr Korobko & Mykola Radchenko & Roman Radchenko, 2022. "Improving Thermoacoustic Low-Temperature Heat Recovery Systems," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    8. Zongming Yang & Victoria Kornienko & Mykola Radchenko & Andrii Radchenko & Roman Radchenko & Anatoliy Pavlenko, 2021. "Capture of Pollutants from Exhaust Gases by Low-Temperature Heating Surfaces," Energies, MDPI, vol. 15(1), pages 1-17, December.
    9. Mohd Tamam, Mohamad Qayyum & Yahya, Wira Jazair & Ithnin, Ahmad Muhsin & Abdullah, Nik Rosli & Kadir, Hasannuddin Abdul & Rahman, Md Mujibur & Rahman, Hasbullah Abdul & Abu Mansor, Mohd Radzi & Noge, , 2023. "Performance and emission studies of a common rail turbocharged diesel electric generator fueled with emulsifier free water/diesel emulsion," Energy, Elsevier, vol. 268(C).
    10. Judt, W. & Ciupek, B. & Urbaniak, R., 2020. "Numerical study of a heat transfer process in a low power heating boiler equipped with afterburning chamber," Energy, Elsevier, vol. 196(C).
    11. Anatoliy M. Pavlenko & Hanna Koshlak, 2021. "Application of Thermal and Cavitation Effects for Heat and Mass Transfer Process Intensification in Multicomponent Liquid Media," Energies, MDPI, vol. 14(23), pages 1-19, November.
    12. Mito, Mohamed T. & Teamah, Mohamed A. & El-Maghlany, Wael M. & Shehata, Ali I., 2018. "Utilizing the scavenge air cooling in improving the performance of marine diesel engine waste heat recovery systems," Energy, Elsevier, vol. 142(C), pages 264-276.
    13. Xia, Jiaxi & Wang, Jiangfeng & Lou, Juwei & Hu, Jianjun & Yao, Sen, 2023. "Thermodynamic, economic, environmental analysis and multi-objective optimization of a novel combined cooling and power system for cascade utilization of engine waste heat," Energy, Elsevier, vol. 277(C).
    14. Wang, Shukun & Liu, Zuming & Liu, Chao & Wang, Xiaonan, 2022. "Thermodynamic analysis of operating strategies for waste heat recovery of combined heating and power systems," Energy, Elsevier, vol. 258(C).
    15. Zongming Yang & Dmytro Konovalov & Mykola Radchenko & Roman Radchenko & Halina Kobalava & Andrii Radchenko & Victoria Kornienko, 2022. "Analysis of Efficiency of Thermopressor Application for Internal Combustion Engine," Energies, MDPI, vol. 15(6), pages 1-29, March.
    16. Markowski, Mariusz & Urbaniec, Krzysztof & Suchecki, Witold & Storczyk, Sandra, 2023. "Improved energy recovery from the condensed steam as part of HEN retrofit," Energy, Elsevier, vol. 270(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrii Radchenko & Mykola Radchenko & Hanna Koshlak & Roman Radchenko & Serhiy Forduy, 2022. "Enhancing the Efficiency of Integrated Energy Systems by the Redistribution of Heat Based on Monitoring Data," Energies, MDPI, vol. 15(22), pages 1-18, November.
    2. Zidong Yu & Terese Løvås & Dmytro Konovalov & Eugeniy Trushliakov & Mykola Radchenko & Halina Kobalava & Roman Radchenko & Andrii Radchenko, 2022. "Investigation of Thermopressor with Incomplete Evaporation for Gas Turbine Intercooling Systems," Energies, MDPI, vol. 16(1), pages 1-19, December.
    3. Mykola Radchenko & Andrii Radchenko & Eugeniy Trushliakov & Hanna Koshlak & Roman Radchenko, 2023. "Advanced Method of Variable Refrigerant Flow (VRF) Systems Designing to Forecast Onsite Operation—Part 2: Phenomenological Simulation to Recoup Refrigeration Energy," Energies, MDPI, vol. 16(4), pages 1-17, February.
    4. Zongming Yang & Roman Radchenko & Mykola Radchenko & Andrii Radchenko & Victoria Kornienko, 2022. "Cooling Potential of Ship Engine Intake Air Cooling and Its Realization on the Route Line," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    5. Mykola Radchenko & Andrii Radchenko & Eugeniy Trushliakov & Anatoliy Pavlenko & Roman Radchenko, 2023. "Advanced Method of Variable Refrigerant Flow (VRF) System Design to Forecast on Site Operation—Part 3: Optimal Solutions to Minimize Sizes," Energies, MDPI, vol. 16(5), pages 1-18, March.
    6. Serhiy Serbin & Mykola Radchenko & Anatoliy Pavlenko & Kateryna Burunsuz & Andrii Radchenko & Daifen Chen, 2023. "Improving Ecological Efficiency of Gas Turbine Power System by Combusting Hydrogen and Hydrogen-Natural Gas Mixtures," Energies, MDPI, vol. 16(9), pages 1-23, April.
    7. Mykola Radchenko & Zongming Yang & Anatoliy Pavlenko & Andrii Radchenko & Roman Radchenko & Hanna Koshlak & Guozhi Bao, 2023. "Increasing the Efficiency of Turbine Inlet Air Cooling in Climatic Conditions of China through Rational Designing—Part 1: A Case Study for Subtropical Climate: General Approaches and Criteria," Energies, MDPI, vol. 16(17), pages 1-16, August.
    8. Zongming Yang & Volodymyr Korobko & Mykola Radchenko & Roman Radchenko, 2022. "Improving Thermoacoustic Low-Temperature Heat Recovery Systems," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    9. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    10. Niamsuwan, Sathit & Kittisupakorn, Paisan & Suwatthikul, Ajaree, 2015. "Enhancement of energy efficiency in a paint curing oven via CFD approach: Case study in an air-conditioning plant," Applied Energy, Elsevier, vol. 156(C), pages 465-477.
    11. Svetlana Ratner & Yuri Chepurko & Larisa Drobyshecskaya & Anna Petrovskaya, 2018. "Management of Energy Enterprises: Energy-efficiency Approach in Solar Collectors Industry: The Case of Russia," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 237-243.
    12. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    13. Wang, Wenqing & Kolditz, Olaf & Nagel, Thomas, 2017. "Parallel finite element modelling of multi-physical processes in thermochemical energy storage devices," Applied Energy, Elsevier, vol. 185(P2), pages 1954-1964.
    14. Qian, Xiaoyan & Dai, Jie & Jiang, Weimin & Cai, Helen & Ye, Xixi & Shahab Vafadaran, Mohammad, 2024. "Economic viability and investment returns of innovative geothermal tri-generation systems: A comparative study," Renewable Energy, Elsevier, vol. 226(C).
    15. Anatoliy M. Pavlenko & Karolina Sadko, 2023. "Evaluation of Numerical Methods for Predicting the Energy Performance of Windows," Energies, MDPI, vol. 16(3), pages 1-23, February.
    16. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).
    17. Yuan, Zhipeng & Liu, Qi & Luo, Baojun & Li, Zhenming & Fu, Jianqin & Chen, Jingwei, 2018. "Thermodynamic analysis of different oil flooded compression enhanced vapor injection cycles," Energy, Elsevier, vol. 154(C), pages 553-560.
    18. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    19. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6743-:d:1244691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.