IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v231y2021ics0360544221012044.html
   My bibliography  Save this article

Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery

Author

Listed:
  • Wang, Shukun
  • Zhang, Lu
  • Liu, Chao
  • Liu, Zuming
  • Lan, Song
  • Li, Qibin
  • Wang, Xiaonan

Abstract

With the development of the world economy, the energy crisis and environmental pollution have become global issues. Polygeneration systems, which have the advantages of energy saving and high efficiency, can alleviate them. This work proposed a novel combined cooling, heating, and power system structure composed of a gas turbine cycle, a supercritical CO2 (sCO2) cycle, an absorption refrigeration chiller, a steam generator, an organic Rankine cycle (ORC), and additional thermoelectric generator modules. The techno-economic-environmental performance of the proposed system was discussed through a comparative study of different integrated system structures. A parametric study was also conducted to analyze the effects of important decision variables, and then a multi-objective optimization was conducted to further study the system performance from different objectives. Finally, two different system structures were compared based on the optimal results. The results showed that the thermal efficiency was increased by 0.3% with the presence of a thermoelectric generator under design conditions, but it resulted in a higher cost rate of 0.45 $/h and larger emissions of approximately 0.19 kt CO2,eq. The optimal results revealed that the system had thermal efficiency of 67.88%, exergy efficiency of 42.62%, total cost rate of 10.60 $/h, and total emissions of 923.55 kt CO2,eq. Furthermore, a comparative study found that the proposed system structure exhibited excellent thermodynamic performance but worse economic performance than the integration of the sCO2 cycle and ORC.

Suggested Citation

  • Wang, Shukun & Zhang, Lu & Liu, Chao & Liu, Zuming & Lan, Song & Li, Qibin & Wang, Xiaonan, 2021. "Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery," Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221012044
    DOI: 10.1016/j.energy.2021.120956
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221012044
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120956?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banakar, Ahmad & Motevali, Ali & Emad, Meysam & Ghobadian, Barat, 2017. "Co-generation of heat and power in a thermoelectric system equipped with Fresnel lens collectors using active and passive cooling techniques," Renewable Energy, Elsevier, vol. 112(C), pages 268-279.
    2. Zhang, Cheng & Liu, Chao & Xu, Xiaoxiao & Li, Qibin & Wang, Shukun & Chen, Xi, 2018. "Effects of superheat and internal heat exchanger on thermo-economic performance of organic Rankine cycle based on fluid type and heat sources," Energy, Elsevier, vol. 159(C), pages 482-495.
    3. Sadeghi, Mohsen & Nemati, Arash & ghavimi, Alireza & Yari, Mortaza, 2016. "Thermodynamic analysis and multi-objective optimization of various ORC (organic Rankine cycle) configurations using zeotropic mixtures," Energy, Elsevier, vol. 109(C), pages 791-802.
    4. Mazzi, N. & Rech, S. & Lazzaretto, A., 2015. "Off-design dynamic model of a real Organic Rankine Cycle system fuelled by exhaust gases from industrial processes," Energy, Elsevier, vol. 90(P1), pages 537-551.
    5. Murugan, S. & Horák, Bohumil, 2016. "Tri and polygeneration systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1032-1051.
    6. Li, Xiaoxiao & Duniam, Sam & Gurgenci, Hal & Guan, Zhiqiang & Veeraragavan, Anand, 2017. "Full scale experimental study of a small natural draft dry cooling tower for concentrating solar thermal power plant," Applied Energy, Elsevier, vol. 193(C), pages 15-27.
    7. Clemente, Stefano & Micheli, Diego & Reini, Mauro & Taccani, Rodolfo, 2012. "Energy efficiency analysis of Organic Rankine Cycles with scroll expanders for cogenerative applications," Applied Energy, Elsevier, vol. 97(C), pages 792-801.
    8. Le, Van Long & Kheiri, Abdelhamid & Feidt, Michel & Pelloux-Prayer, Sandrine, 2014. "Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid," Energy, Elsevier, vol. 78(C), pages 622-638.
    9. Wu, Sijie & Zhang, Houcheng & Ni, Meng, 2016. "Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 112(C), pages 520-527.
    10. Han, Wei & Chen, Qiang & Lin, Ru-mou & Jin, Hong-guang, 2015. "Assessment of off-design performance of a small-scale combined cooling and power system using an alternative operating strategy for gas turbine," Applied Energy, Elsevier, vol. 138(C), pages 160-168.
    11. Yang, Jingye & Ye, Zhenhong & Yu, Binbin & Ouyang, Hongsheng & Chen, Jiangping, 2019. "Simultaneous experimental comparison of low-GWP refrigerants as drop-in replacements to R245fa for Organic Rankine cycle application: R1234ze(Z), R1233zd(E), and R1336mzz(E)," Energy, Elsevier, vol. 173(C), pages 721-731.
    12. Song, Jian & Li, Xue-song & Ren, Xiao-dong & Gu, Chun-wei, 2018. "Performance analysis and parametric optimization of supercritical carbon dioxide (S-CO2) cycle with bottoming Organic Rankine Cycle (ORC)," Energy, Elsevier, vol. 143(C), pages 406-416.
    13. Wang, Huarong & Xu, Jinliang & Yang, Xufei & Miao, Zheng & Yu, Chao, 2015. "Organic Rankine cycle saves energy and reduces gas emissions for cement production," Energy, Elsevier, vol. 86(C), pages 59-73.
    14. Wang, Xurong & Dai, Yiping, 2016. "Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study," Applied Energy, Elsevier, vol. 170(C), pages 193-207.
    15. Li, Jian & Yang, Zhen & Hu, Shuozhuo & Yang, Fubin & Duan, Yuanyuan, 2020. "Thermo-economic analyses and evaluations of small-scale dual-pressure evaporation organic Rankine cycle system using pure fluids," Energy, Elsevier, vol. 206(C).
    16. Xu, Jinliang & Sun, Enhui & Li, Mingjia & Liu, Huan & Zhu, Bingguo, 2018. "Key issues and solution strategies for supercritical carbon dioxide coal fired power plant," Energy, Elsevier, vol. 157(C), pages 227-246.
    17. Collings, Peter & Yu, Zhibin & Wang, Enhua, 2016. "A dynamic organic Rankine cycle using a zeotropic mixture as the working fluid with composition tuning to match changing ambient conditions," Applied Energy, Elsevier, vol. 171(C), pages 581-591.
    18. Chatzopoulou, Maria Anna & Simpson, Michael & Sapin, Paul & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with piston expanders for medium-scale combined heat and power applications," Applied Energy, Elsevier, vol. 238(C), pages 1211-1236.
    19. Liu, Zhan & Liu, Zihui & Xin, Xuan & Yang, Xiaohu, 2020. "Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis," Applied Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rujun Zhang & Xiaohe Wang & Shuang Yang & Xin Shen, 2024. "Thermodynamic Analysis of a Cogeneration System Combined with Heat, Cold, and Electricity Based on the Supercritical CO 2 Power Cycle," Energies, MDPI, vol. 17(7), pages 1-20, April.
    2. Matsui, Kohei & Lin, Jie & Thu, Kyaw & Miyazaki, Takahiko, 2022. "On the performance improvement of an inverted Brayton Cycle using a regenerative heat and mass exchanger," Energy, Elsevier, vol. 249(C).
    3. Yu, Wei & Liu, Chao & Tan, Luxi & Li, Qibin & Xin, Liyong & Wang, Shukun, 2023. "Thermal stability and thermal decomposition mechanism of octamethyltrisiloxane (MDM): Combined experiment, ReaxFF-MD and DFT study," Energy, Elsevier, vol. 284(C).
    4. Mosaffa, A.H. & Garousi Farshi, L., 2022. "Exergoeconomic analysis and optimization of a novel integrated two power/cooling cogeneration system using zeotropic mixtures," Energy, Elsevier, vol. 253(C).
    5. Qian, Xiaoyan & Dai, Jie & Jiang, Weimin & Cai, Helen & Ye, Xixi & Shahab Vafadaran, Mohammad, 2024. "Economic viability and investment returns of innovative geothermal tri-generation systems: A comparative study," Renewable Energy, Elsevier, vol. 226(C).
    6. Fang, Yi & Li, Xian & Ascher, Simon & Li, Yize & Dai, Leilei & Ruan, Roger & You, Siming, 2023. "Life cycle assessment and cost benefit analysis of concentrated solar thermal gasification of biomass for continuous electricity generation," Energy, Elsevier, vol. 284(C).
    7. Abdulrazzak Akroot & Mohamed Almaktar & Feras Alasali, 2024. "The Integration of Renewable Energy into a Fossil Fuel Power Generation System in Oil-Producing Countries: A Case Study of an Integrated Solar Combined Cycle at the Sarir Power Plant," Sustainability, MDPI, vol. 16(11), pages 1-29, June.
    8. Assareh, Ehsanolah & Kazemiani-Najafabadi, Parisa & Rad, Ehsan Amiri & Arabkoohsar, Ahmad, 2023. "Optimization of a trigeneration cooling, heating, and power system with low-temperature waste heat from 4E points of view," Energy, Elsevier, vol. 283(C).
    9. Azizi, Saeid & Shakibi, Hamid & Shokri, Afshar & Chitsaz, Ata & Yari, Mortaza, 2023. "Multi-aspect analysis and RSM-based optimization of a novel dual-source electricity and cooling cogeneration system," Applied Energy, Elsevier, vol. 332(C).
    10. Tao, Hai & Alawi, Omer A. & Kamar, Haslinda Mohamed & Nafea, Ahmed Adil & AL-Ani, Mohammed M. & Abba, Sani I. & Salami, Babatunde Abiodun & Oudah, Atheer Y. & Mohammed, Mustafa K.A., 2024. "Development of integrative data intelligence models for thermo-economic performances prediction of hybrid organic rankine plants," Energy, Elsevier, vol. 292(C).
    11. Jiang, Yuemao & Ma, Yue & Han, Fenghui & Ji, Yulong & Cai, Wenjian & Wang, Zhe, 2023. "Assessment and optimization of a novel waste heat stepped utilization system integrating partial heating sCO2 cycle and ejector refrigeration cycle using zeotropic mixtures for gas turbine," Energy, Elsevier, vol. 265(C).
    12. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    13. Ren, Jie & Qian, Zuoqin & Fei, Chunguang & Lu, Ding & Zou, Yincai & Xu, Chen & Liu, Lu, 2023. "Thermodynamic, exergoeconomic, and exergoenvironmental analysis of a combined cooling and power system for natural gas-biomass dual fuel gas turbine waste heat recovery," Energy, Elsevier, vol. 269(C).
    14. Khoshgoftar Manesh, M.H. & Mehrabian, M.J. & Nourpour, M. & Onishi, V.C., 2023. "Risk and 4E analyses and optimization of a novel solar-natural gas-driven polygeneration system based on Integration of Gas Turbine–SCO2–ORC-solar PV-PEM electrolyzer," Energy, Elsevier, vol. 263(PD).
    15. Tianliang, Wang & Hong, Tan, 2023. "Thermodynamic and exergoeconomic analysis of an innovative cogeneration of power and freshwater based on gas turbine cycle," Energy, Elsevier, vol. 285(C).
    16. Zuxian Zhang & Liqiang Duan & Zhen Wang & Yujie Ren, 2023. "Design and Performance Analysis of a Novel Integrated Solar Combined Cycle (ISCC) with a Supercritical CO 2 Bottom Cycle," Energies, MDPI, vol. 16(12), pages 1-27, June.
    17. Xianliang Liu & Haodong Chen & Jianyi Huang & Kaiming Qiao & Ziyuan Yu & Longlong Xie & Raju V. Ramanujan & Fengxia Hu & Ke Chu & Yi Long & Hu Zhang, 2023. "High-performance thermomagnetic generator controlled by a magnetocaloric switch," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Victoria Kornienko & Mykola Radchenko & Andrii Radchenko & Hanna Koshlak & Roman Radchenko, 2023. "Enhancing the Fuel Efficiency of Cogeneration Plants by Fuel Oil Afterburning in Exhaust Gas before Boilers," Energies, MDPI, vol. 16(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    3. Magdalena Santos-Rodriguez, M. & Flores-Tlacuahuac, Antonio & Zavala, Victor M., 2017. "A stochastic optimization approach for the design of organic fluid mixtures for low-temperature heat recovery," Applied Energy, Elsevier, vol. 198(C), pages 145-159.
    4. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    5. Rech, Sergio & Zandarin, Simone & Lazzaretto, Andrea & Frangopoulos, Christos A., 2017. "Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy," Applied Energy, Elsevier, vol. 204(C), pages 221-241.
    6. Karimi, Shahram & Mansouri, Sima, 2018. "A comparative profitability study of geothermal electricity production in developed and developing countries: Exergoeconomic analysis and optimization of different ORC configurations," Renewable Energy, Elsevier, vol. 115(C), pages 600-619.
    7. Roumpedakis, Tryfon C. & Loumpardis, George & Monokrousou, Evropi & Braimakis, Konstantinos & Charalampidis, Antonios & Karellas, Sotirios, 2020. "Exergetic and economic analysis of a solar driven small scale ORC," Renewable Energy, Elsevier, vol. 157(C), pages 1008-1024.
    8. Seyed Mohammad Seyed Mahmoudi & Ramin Ghiami Sardroud & Mohsen Sadeghi & Marc A. Rosen, 2022. "Integration of Supercritical CO 2 Recompression Brayton Cycle with Organic Rankine/Flash and Kalina Cycles: Thermoeconomic Comparison," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
    9. Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
    10. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    11. Al-Mousawi, Fadhel Noraldeen & Al-Dadah, Raya & Mahmoud, Saad, 2016. "Low grade heat driven adsorption system for cooling and power generation with small-scale radial inflow turbine," Applied Energy, Elsevier, vol. 183(C), pages 1302-1316.
    12. Wang, Shengpeng & Zhang, Yifan & Li, Hongzhi & Yao, Mingyu & Peng, Botao & Yan, Junjie, 2020. "Thermohydrodynamic analysis of the vertical gas wall and reheat gas wall in a 300 MW supercritical CO2 boiler," Energy, Elsevier, vol. 211(C).
    13. Feng, Yong-qiang & Wang, Yu & Yao, Lin & Xu, Jing-wei & Zhang, Fei-yang & He, Zhi-xia & Wang, Qian & Ma, Jian-long, 2023. "Parametric analysis and thermal-economical optimization of a parallel dual pressure evaporation and two stage regenerative organic Rankine cycle using mixture working fluids," Energy, Elsevier, vol. 263(PA).
    14. Li, Xiaoxiao & Gurgenci, Hal & Guan, Zhiqiang & Wang, Xurong & Duniam, Sam, 2017. "Measurements of crosswind influence on a natural draft dry cooling tower for a solar thermal power plant," Applied Energy, Elsevier, vol. 206(C), pages 1169-1183.
    15. Son, Seongmin & Jeong, Yongju & Cho, Seong Kuk & Lee, Jeong Ik, 2020. "Development of supercritical CO2 turbomachinery off-design model using 1D mean-line method and Deep Neural Network," Applied Energy, Elsevier, vol. 263(C).
    16. Zhang, Ying & Deng, Shuai & Ni, Jiaxin & Zhao, Li & Yang, Xingyang & Li, Minxia, 2017. "A literature research on feasible application of mixed working fluid in flexible distributed energy system," Energy, Elsevier, vol. 137(C), pages 377-390.
    17. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    18. Zhang, Yuan & Liang, Tianyang & Yang, Ke, 2022. "An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization," Energy, Elsevier, vol. 247(C).
    19. Wang, Zefeng & Han, Wei & Zhang, Na & Gan, Zhongxue & Sun, Jie & Jin, Hongguang, 2018. "Energy level difference graphic analysis method of combined cooling, heating and power systems," Energy, Elsevier, vol. 160(C), pages 1069-1077.
    20. Liu, Zhan & Liu, Zihui & Cao, Xing & Li, Hailong & Yang, Xiaohu, 2020. "Self-condensing transcritical CO2 cogeneration system with extraction turbine and ejector refrigeration cycle: A techno-economic assessment study," Energy, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221012044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.