IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15058-d972235.html
   My bibliography  Save this article

Cooling Potential of Ship Engine Intake Air Cooling and Its Realization on the Route Line

Author

Listed:
  • Zongming Yang

    (School of Energy and Power, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang 212003, China)

  • Roman Radchenko

    (Machinebuilding Institute, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine)

  • Mykola Radchenko

    (Machinebuilding Institute, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine)

  • Andrii Radchenko

    (Machinebuilding Institute, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine)

  • Victoria Kornienko

    (Machinebuilding Institute, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine)

Abstract

A fuel efficiency of a ship engine increases with cooling inlet air. This might be performed by the chillers, which transform the heat of engine exhaust gas and scavenge air for refrigeration. The effect gained due to cooling depends on the intake air temperature drop and the time of engine operation at decreased intake air temperature. Thus, the cooling degree hour (CDH) number, calculated as air temperature depression multiplied by the duration of engine operation at reduced intake air temperature, is used as a primary criterion to estimate the engine fuel efficiency enhancement due to intake air cooling over the ship routes. The engine intake air cooling potential is limited by its value, available according to engine exhaust heat and the efficiency of heat conversion to refrigeration in the chiller, evaluated by the coefficient of performance (COP). Therefore, it should be determined by comparing both the needed and available values of CDH. The ejector chiller (ECh) was chosen for engine exhaust gas heat recovery to refrigeration as the simplest and cheapest, although it has a relatively low COP of about 0.3 to 0.35. However, the ECh generally consists of heat exchanges which are mostly adapted to be placed in free spaces and can be mounted on the transverse and board side bulkheads in the ship engine room. The values of sucked air temperature depression and engine fuel consumption reduction at varying temperatures and humidity of ambient air on the route were evaluated.

Suggested Citation

  • Zongming Yang & Roman Radchenko & Mykola Radchenko & Andrii Radchenko & Victoria Kornienko, 2022. "Cooling Potential of Ship Engine Intake Air Cooling and Its Realization on the Route Line," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15058-:d:972235
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15058/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15058/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Cheng & Yang, Zeliang & Cai, Ruixian, 2009. "Analytical method for evaluation of gas turbine inlet air cooling in combined cycle power plant," Applied Energy, Elsevier, vol. 86(6), pages 848-856, June.
    2. Zongming Yang & Mykola Radchenko & Andrii Radchenko & Dariusz Mikielewicz & Roman Radchenko, 2022. "Gas Turbine Intake Air Hybrid Cooling Systems and a New Approach to Their Rational Designing," Energies, MDPI, vol. 15(4), pages 1-18, February.
    3. Freschi, F. & Giaccone, L. & Lazzeroni, P. & Repetto, M., 2013. "Economic and environmental analysis of a trigeneration system for food-industry: A case study," Applied Energy, Elsevier, vol. 107(C), pages 157-172.
    4. Coskun, C., 2010. "A novel approach to degree-hour calculation: Indoor and outdoor reference temperature based degree-hour calculation," Energy, Elsevier, vol. 35(6), pages 2455-2460.
    5. Andrii Radchenko & Mykola Radchenko & Dariusz Mikielewicz & Anatoliy Pavlenko & Roman Radchenko & Serhiy Forduy, 2022. "Energy Saving in Trigeneration Plant for Food Industries," Energies, MDPI, vol. 15(3), pages 1-14, February.
    6. Lucia, Umberto, 2013. "Adsorber efficiency in adsorbtion refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 570-575.
    7. Marcin Kruzel & Tadeusz Bohdal & Krzysztof Dutkowski & Mykola Radchenko, 2022. "The Effect of Microencapsulated PCM Slurry Coolant on the Efficiency of a Shell and Tube Heat Exchanger," Energies, MDPI, vol. 15(14), pages 1-11, July.
    8. Manzela, André Aleixo & Hanriot, Sérgio Morais & Cabezas-Gómez, Luben & Sodré, José Ricardo, 2010. "Using engine exhaust gas as energy source for an absorption refrigeration system," Applied Energy, Elsevier, vol. 87(4), pages 1141-1148, April.
    9. Zongming Yang & Dmytro Konovalov & Mykola Radchenko & Roman Radchenko & Halina Kobalava & Andrii Radchenko & Victoria Kornienko, 2022. "Analysis of Efficiency of Thermopressor Application for Internal Combustion Engine," Energies, MDPI, vol. 15(6), pages 1-29, March.
    10. Zongming Yang & Victoria Kornienko & Mykola Radchenko & Andrii Radchenko & Roman Radchenko & Anatoliy Pavlenko, 2021. "Capture of Pollutants from Exhaust Gases by Low-Temperature Heating Surfaces," Energies, MDPI, vol. 15(1), pages 1-17, December.
    11. Carvalho, Monica & Lozano, Miguel A. & Serra, Luis M., 2012. "Multicriteria synthesis of trigeneration systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 91(1), pages 245-254.
    12. Oktay, Z. & Coskun, C. & Dincer, I., 2011. "A new approach for predicting cooling degree-hours and energy requirements in buildings," Energy, Elsevier, vol. 36(8), pages 4855-4863.
    13. Marcin Kruzel & Tadeusz Bohdal & Krzysztof Dutkowski & Waldemar Kuczyński & Katarzyna Chliszcz, 2022. "Current Research Trends in the Process of Condensation of Cooling Zeotropic Mixtures in Compact Condensers," Energies, MDPI, vol. 15(6), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mykola Radchenko & Andrii Radchenko & Eugeniy Trushliakov & Anatoliy Pavlenko & Roman Radchenko, 2023. "Advanced Method of Variable Refrigerant Flow (VRF) Systems Designing to Forecast On-Site Operation—Part 1: General Approaches and Criteria," Energies, MDPI, vol. 16(3), pages 1-18, January.
    2. Mykola Radchenko & Andrii Radchenko & Eugeniy Trushliakov & Anatoliy Pavlenko & Roman Radchenko, 2023. "Advanced Method of Variable Refrigerant Flow (VRF) System Design to Forecast on Site Operation—Part 3: Optimal Solutions to Minimize Sizes," Energies, MDPI, vol. 16(5), pages 1-18, March.
    3. Serhiy Serbin & Mykola Radchenko & Anatoliy Pavlenko & Kateryna Burunsuz & Andrii Radchenko & Daifen Chen, 2023. "Improving Ecological Efficiency of Gas Turbine Power System by Combusting Hydrogen and Hydrogen-Natural Gas Mixtures," Energies, MDPI, vol. 16(9), pages 1-23, April.
    4. Mykola Radchenko & Andrii Radchenko & Eugeniy Trushliakov & Hanna Koshlak & Roman Radchenko, 2023. "Advanced Method of Variable Refrigerant Flow (VRF) Systems Designing to Forecast Onsite Operation—Part 2: Phenomenological Simulation to Recoup Refrigeration Energy," Energies, MDPI, vol. 16(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrii Radchenko & Mykola Radchenko & Hanna Koshlak & Roman Radchenko & Serhiy Forduy, 2022. "Enhancing the Efficiency of Integrated Energy Systems by the Redistribution of Heat Based on Monitoring Data," Energies, MDPI, vol. 15(22), pages 1-18, November.
    2. Mykola Radchenko & Andrii Radchenko & Eugeniy Trushliakov & Hanna Koshlak & Roman Radchenko, 2023. "Advanced Method of Variable Refrigerant Flow (VRF) Systems Designing to Forecast Onsite Operation—Part 2: Phenomenological Simulation to Recoup Refrigeration Energy," Energies, MDPI, vol. 16(4), pages 1-17, February.
    3. Zidong Yu & Terese Løvås & Dmytro Konovalov & Eugeniy Trushliakov & Mykola Radchenko & Halina Kobalava & Roman Radchenko & Andrii Radchenko, 2022. "Investigation of Thermopressor with Incomplete Evaporation for Gas Turbine Intercooling Systems," Energies, MDPI, vol. 16(1), pages 1-19, December.
    4. Mykola Radchenko & Andrii Radchenko & Eugeniy Trushliakov & Anatoliy Pavlenko & Roman Radchenko, 2023. "Advanced Method of Variable Refrigerant Flow (VRF) System Design to Forecast on Site Operation—Part 3: Optimal Solutions to Minimize Sizes," Energies, MDPI, vol. 16(5), pages 1-18, March.
    5. Victoria Kornienko & Mykola Radchenko & Andrii Radchenko & Hanna Koshlak & Roman Radchenko, 2023. "Enhancing the Fuel Efficiency of Cogeneration Plants by Fuel Oil Afterburning in Exhaust Gas before Boilers," Energies, MDPI, vol. 16(18), pages 1-20, September.
    6. Zongming Yang & Mykola Radchenko & Andrii Radchenko & Dariusz Mikielewicz & Roman Radchenko, 2022. "Gas Turbine Intake Air Hybrid Cooling Systems and a New Approach to Their Rational Designing," Energies, MDPI, vol. 15(4), pages 1-18, February.
    7. Zongming Yang & Volodymyr Korobko & Mykola Radchenko & Roman Radchenko, 2022. "Improving Thermoacoustic Low-Temperature Heat Recovery Systems," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    8. Serhiy Serbin & Mykola Radchenko & Anatoliy Pavlenko & Kateryna Burunsuz & Andrii Radchenko & Daifen Chen, 2023. "Improving Ecological Efficiency of Gas Turbine Power System by Combusting Hydrogen and Hydrogen-Natural Gas Mixtures," Energies, MDPI, vol. 16(9), pages 1-23, April.
    9. Andrii Radchenko & Eugeniy Trushliakov & Krzysztof Kosowski & Dariusz Mikielewicz & Mykola Radchenko, 2020. "Innovative Turbine Intake Air Cooling Systems and Their Rational Designing," Energies, MDPI, vol. 13(23), pages 1-22, November.
    10. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    11. Zegenhagen, M.T. & Ziegler, F., 2015. "Feasibility analysis of an exhaust gas waste heat driven jet-ejector cooling system for charge air cooling of turbocharged gasoline engines," Applied Energy, Elsevier, vol. 160(C), pages 221-230.
    12. Pinto, Edwin S. & Serra, Luis M. & Lázaro, Ana, 2020. "Evaluation of methods to select representative days for the optimization of polygeneration systems," Renewable Energy, Elsevier, vol. 151(C), pages 488-502.
    13. Ezzat, M.F. & Dincer, I., 2019. "Development and exergetic assessment of a new hybrid vehicle incorporating gas turbine as powering option," Energy, Elsevier, vol. 170(C), pages 112-119.
    14. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    15. Aikaterini Papadimitriou & Anastasios Tosios & Eugenia Giannini, 2021. "Techno-Economic Performance Assessment of a Trigeneration System Operating in a Hospital," Energies, MDPI, vol. 14(16), pages 1-21, August.
    16. Bahman, Ammar & Rosario, Luis & Rahman, Muhammad M., 2012. "Analysis of energy savings in a supermarket refrigeration/HVAC system," Applied Energy, Elsevier, vol. 98(C), pages 11-21.
    17. Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    18. Wang, Tianyou & Zhang, Yajun & Peng, Zhijun & Shu, Gequn, 2011. "A review of researches on thermal exhaust heat recovery with Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2862-2871, August.
    19. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    20. Guerra, Omar J. & Reklaitis, Gintaras V., 2018. "Advances and challenges in water management within energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4009-4019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15058-:d:972235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.