IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics0960148124004610.html
   My bibliography  Save this article

Economic viability and investment returns of innovative geothermal tri-generation systems: A comparative study

Author

Listed:
  • Qian, Xiaoyan
  • Dai, Jie
  • Jiang, Weimin
  • Cai, Helen
  • Ye, Xixi
  • Shahab Vafadaran, Mohammad

Abstract

In a world grappling with escalating energy needs, environmental concerns, and economic constraints, the transition to renewable energy becomes critical. This study delves into geothermal energy, a promising renewable source, to develop four distinctive tri-generation systems (producing power, heat, and freshwater) optimized for economic efficiency and investment returns. The primary focus is on assessing these systems through an innovative lens of economic viability, including net present value (NPV) and payback periods, alongside their thermodynamic performance. Notably, System B emerges as the most economically advantageous, boasting the shortest payback period of 3.65 years and the highest NPV of $2.38 million, while System C trails with the lowest NPV of $0.32 million. Additionally, System D, identified as optimally complementary, undergoes comprehensive optimization using advanced algorithms and machine learning, achieving notable efficiencies and cost-effectiveness in power output, exergy, and freshwater production. This study not only underscores the potential of geothermal tri-generation systems in meeting energy, heat, and water needs but also highlights their significant economic benefits and investment attractiveness, offering a compelling case for their adoption in sustainable energy strategies.

Suggested Citation

  • Qian, Xiaoyan & Dai, Jie & Jiang, Weimin & Cai, Helen & Ye, Xixi & Shahab Vafadaran, Mohammad, 2024. "Economic viability and investment returns of innovative geothermal tri-generation systems: A comparative study," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004610
    DOI: 10.1016/j.renene.2024.120396
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120396?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yari, Mortaza, 2010. "Exergetic analysis of various types of geothermal power plants," Renewable Energy, Elsevier, vol. 35(1), pages 112-121.
    2. Li, Huabin & Tao, Ye & Zhang, Yang & Fu, Hong, 2022. "Two-objective optimization of a hybrid solar-geothermal system with thermal energy storage for power, hydrogen and freshwater production based on transcritical CO2 cycle," Renewable Energy, Elsevier, vol. 183(C), pages 51-66.
    3. Gholizadeh, Towhid & Vajdi, Mohammad & Rostamzadeh, Hadi, 2020. "A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source," Renewable Energy, Elsevier, vol. 148(C), pages 31-43.
    4. Nima Ghasemzadeh & Shayan Sharafi Laleh & Saeed Soltani & Mortaza Yari & Marc A. Rosen, 2023. "Using Green Energy Sources in Trigeneration Systems to Reduce Environmental Pollutants: Thermodynamic and Environmental Evaluation," Sustainability, MDPI, vol. 15(17), pages 1-17, September.
    5. Hu, Tianxiang & Shen, Yongting & Kwan, Trevor Hocksun & Pei, Gang, 2022. "Absorption chiller waste heat utilization to the desiccant dehumidifier system for enhanced cooling – Energy and exergy analysis," Energy, Elsevier, vol. 239(PA).
    6. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2020. "A new high-efficient cooling/power cogeneration system based on a double-flash geothermal power plant and a novel zeotropic bi-evaporator ejector refrigeration cycle," Renewable Energy, Elsevier, vol. 162(C), pages 2126-2152.
    7. Wang, Shukun & Zhang, Lu & Liu, Chao & Liu, Zuming & Lan, Song & Li, Qibin & Wang, Xiaonan, 2021. "Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery," Energy, Elsevier, vol. 231(C).
    8. Ji-chao, Yang & Sobhani, Behrooz, 2021. "Integration of biomass gasification with a supercritical CO2 and Kalina cycles in a combined heating and power system: A thermodynamic and exergoeconomic analysis," Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Shuguang & Leng, Yuchi & Chaturvedi, Rishabh & Dutta, Ashit Kumar & Abdullaeva, Barno Sayfutdinovna & Fouad, Yasser, 2024. "Sustainable freshwater/energy supply through geothermal-centered layout tailored with humidification-dehumidification desalination unit; Optimized by regression machine learning techniques," Energy, Elsevier, vol. 303(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nima Ghasemzadeh & Shayan Sharafi Laleh & Saeed Soltani & Mortaza Yari & Marc A. Rosen, 2023. "Using Green Energy Sources in Trigeneration Systems to Reduce Environmental Pollutants: Thermodynamic and Environmental Evaluation," Sustainability, MDPI, vol. 15(17), pages 1-17, September.
    2. Zhou, Xiao & Cai, Yangchao & Li, Xuetao, 2024. "Process arrangement and multi-aspect study of a novel environmentally-friendly multigeneration plant relying on a geothermal-based plant combined with the goswami cycle booted by kalina and desalinati," Energy, Elsevier, vol. 299(C).
    3. Hashemian, Nasim & Noorpoor, Alireza, 2022. "A geothermal-biomass powered multi-generation plant with freshwater and hydrogen generation options: Thermo-economic-environmental appraisals and multi-criteria optimization," Renewable Energy, Elsevier, vol. 198(C), pages 254-266.
    4. Nemati Mofarrah, Ali & Jalalvand, Meysam & Abdolmaleki, Abbas, 2023. "Design, multi-aspect analyses, and multi-objective optimization of a biomass/geothermal-based cogeneration of power and freshwater," Energy, Elsevier, vol. 282(C).
    5. Feng, Jieru & Huang, Yiqing & Li, Juqiang & Li, Xuetao, 2024. "Design and multi-criteria optimization and financial assessment of an innovative combined power plant and desalination process," Energy, Elsevier, vol. 300(C).
    6. Hou, Rui & Zhang, Nachuan & Gao, Wei & Chen, Kang & Liu, Lijun & Kumar, M. Saravana, 2023. "Design and optimization of a novel flash-binary-based hybrid system to produce power, cooling, freshwater, and liquid hydrogen," Energy, Elsevier, vol. 280(C).
    7. Liu, Fei & Yang, Changjin & Li, Biao & Silang, Yangji & Zhu, Yuhui & Farkoush, Saeid Gholami, 2022. "Thermodynamic and economic sensitivity analyses of a geothermal-based trigeneration system; performance enhancement through determining the best zeotropic working fluid," Energy, Elsevier, vol. 246(C).
    8. Hai, Tao & Lin, Haitao & Chauhan, Bhupendra Singh & Ayed, Hamdi & Loukil, Hassen & Galal, Ahmed M. & Yaman, Deniz, 2023. "Performance analysis and optimization of a novel geothermal trigeneration system with enhanced Organic Rankine cycle, Kalina cycle, reverse osmosis, and supercritical CO2 cycle," Renewable Energy, Elsevier, vol. 211(C), pages 539-562.
    9. Khoshgoftar Manesh, M.H. & Mehrabian, M.J. & Nourpour, M. & Onishi, V.C., 2023. "Risk and 4E analyses and optimization of a novel solar-natural gas-driven polygeneration system based on Integration of Gas Turbine–SCO2–ORC-solar PV-PEM electrolyzer," Energy, Elsevier, vol. 263(PD).
    10. Matsui, Kohei & Lin, Jie & Thu, Kyaw & Miyazaki, Takahiko, 2022. "On the performance improvement of an inverted Brayton Cycle using a regenerative heat and mass exchanger," Energy, Elsevier, vol. 249(C).
    11. Pan, Jie & Li, Mofan & Zhu, Min & Li, Ran & Tang, Linghong & Bai, Junhua, 2023. "Energy, exergy and economic analysis of different integrated systems for power generation using LNG cold energy and geothermal energy," Renewable Energy, Elsevier, vol. 202(C), pages 1054-1070.
    12. Mohammadi, Zahra & Fallah, Mohsen, 2023. "Conventional and advanced exergy investigation of a double flash cycle integrated by absorption cooling, ORC, and TEG power system driven by geothermal energy," Energy, Elsevier, vol. 282(C).
    13. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    14. Li, Tailu & Zhu, Jialing & Hu, Kaiyong & Kang, Zhenhua & Zhang, Wei, 2014. "Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield," Energy, Elsevier, vol. 68(C), pages 680-687.
    15. Anahita Moharamian & Saeed Soltani & Faramarz Ranjbar & Mortaza Yari & Marc A Rosen, 2017. "Thermodynamic analysis of a wall mounted gas boiler with an organic Rankine cycle and hydrogen production unit," Energy & Environment, , vol. 28(7), pages 725-743, November.
    16. Cao, Yan & Dhahad, Hayder A. & Alsharif, Sameer & Sharma, Kamal & El.Shafy, Asem Saleh & Farhang, Babak & Mohammed, Adil Hussein, 2022. "Multi-objective optimizations and exergoeconomic analyses of a high-efficient bi-evaporator multigeneration system with freshwater unit," Renewable Energy, Elsevier, vol. 191(C), pages 699-714.
    17. Lai, Ngoc Anh & Wendland, Martin & Fischer, Johann, 2011. "Working fluids for high-temperature organic Rankine cycles," Energy, Elsevier, vol. 36(1), pages 199-211.
    18. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    19. Mehri Akbari & Seyed M. S. Mahmoudi & Mortaza Yari & Marc A. Rosen, 2014. "Energy and Exergy Analyses of a New Combined Cycle for Producing Electricity and Desalinated Water Using Geothermal Energy," Sustainability, MDPI, vol. 6(4), pages 1-25, April.
    20. Cai, Jianhui & Fei, Jiaming & Li, Liguang & Fei, Cheng & Maghsoudniazi, Mohammadhadi & Su, Zhanguo, 2023. "Multicriteria study of geothermal trigeneration systems with configurations of hybrid vapor compression refrigeration and Kalina cycles for sport arena application," Renewable Energy, Elsevier, vol. 219(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.