IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v258y2022ics0360544222017066.html
   My bibliography  Save this article

Thermodynamic analysis of operating strategies for waste heat recovery of combined heating and power systems

Author

Listed:
  • Wang, Shukun
  • Liu, Zuming
  • Liu, Chao
  • Wang, Xiaonan

Abstract

The multi-generation system often operates under off-design conditions due to the highly dynamic energy demand. Improving its off-design performance is crucial for energy conservation and emission reductions. To this end, this paper proposed a novel control strategy for the gas turbine cycle applied in combined heating and power (CHP) system, which effectively combines turbine inlet temperature control (TITC) and inlet air throttling control (IATC) methods, to improve system off-design performance and avoid discharging low-temperature gas. The hybrid control strategy can improve system efficiency by 3.70% on average over the traditional TITC method during the entire load range. Moreover, the maximum efficiency difference between these two methods reached 5.15% at the 30%-load factor conditions. To further showcase the effectiveness of the IAT-TITC method, the CHP system is integrated with an electric chiller and thermal refrigeration, respectively, forming four combined cooling, heating, and power (CCHP) system scenarios to supply the energy for a hotel building. Not only did the CCHP system scenarios with the IAT-TITC method show better performance, but also considering an electric chiller as an extra cooling supply machine can reduce primary energy consumption by 30.73%, 28.32%, and 11.56% in summer, transition season, and winter typical days, respectively, compared with separation system.

Suggested Citation

  • Wang, Shukun & Liu, Zuming & Liu, Chao & Wang, Xiaonan, 2022. "Thermodynamic analysis of operating strategies for waste heat recovery of combined heating and power systems," Energy, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017066
    DOI: 10.1016/j.energy.2022.124803
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222017066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chatzopoulou, Maria Anna & Lecompte, Steven & Paepe, Michel De & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Declaye, Sébastien & Quoilin, Sylvain & Guillaume, Ludovic & Lemort, Vincent, 2013. "Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid," Energy, Elsevier, vol. 55(C), pages 173-183.
    3. Han, Wei & Chen, Qiang & Lin, Ru-mou & Jin, Hong-guang, 2015. "Assessment of off-design performance of a small-scale combined cooling and power system using an alternative operating strategy for gas turbine," Applied Energy, Elsevier, vol. 138(C), pages 160-168.
    4. Wang, Zefeng & Han, Wei & Zhang, Na & Liu, Meng & Jin, Hongguang, 2017. "Effect of an alternative operating strategy for gas turbine on a combined cooling heating and power system," Applied Energy, Elsevier, vol. 205(C), pages 163-172.
    5. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    6. Stathopoulos, P. & Paschereit, C.O., 2015. "Retrofitting micro gas turbines for wet operation. A way to increase operational flexibility in distributed CHP plants," Applied Energy, Elsevier, vol. 154(C), pages 438-446.
    7. Basrawi, Firdaus & Ibrahim, Thamir K. & Habib, Khairul & Yamada, Takanobu, 2016. "Effect of operation strategies on the economic and environmental performance of a micro gas turbine trigeneration system in a tropical region," Energy, Elsevier, vol. 97(C), pages 262-272.
    8. Wang, Zefeng & Han, Wei & Zhang, Na & Su, Bosheng & Gan, Zhongxue & Jin, Hongguang, 2018. "Effects of different alternative control methods for gas turbine on the off-design performance of a trigeneration system," Applied Energy, Elsevier, vol. 215(C), pages 227-236.
    9. Zheng, C.Y. & Wu, J.Y. & Zhai, X.Q. & Wang, R.Z., 2016. "Impacts of feed-in tariff policies on design and performance of CCHP system in different climate zones," Applied Energy, Elsevier, vol. 175(C), pages 168-179.
    10. Zhang, Cheng & Liu, Chao & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin, 2017. "Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations," Energy, Elsevier, vol. 123(C), pages 728-741.
    11. Barelli, Linda & Ottaviano, Andrea, 2015. "Supercharged gas turbine combined cycle: An improvement in plant flexibility and efficiency," Energy, Elsevier, vol. 81(C), pages 615-626.
    12. He, Chao & Liu, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2012. "The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle," Energy, Elsevier, vol. 38(1), pages 136-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Tian & Li, Hang & Li, Xia & Sun, Qing-Han & Fang, Xuan-Yi & Ma, Huan & Chen, Qun, 2024. "A frequency domain dynamic simulation method for heat exchangers and thermal systems," Energy, Elsevier, vol. 286(C).
    2. Zhang, Yifan & Ren, Xiao & Duan, Xinyue & Gong, Liang & Hung, Tzu-Chen, 2024. "Strategy for the zeotropic organic rankine cycle operation to match the heat sink variation," Energy, Elsevier, vol. 286(C).
    3. Zhang, Ji & Wu, Ding & Huang, Xiaohui & Hu, Xudong & Fang, Xi & Wen, Chuang, 2024. "Comparative study on the organic rankine cycle off-design performance under different zeotropic mixture flow boiling correlations," Renewable Energy, Elsevier, vol. 226(C).
    4. Wang, Shukun & Li, Ke & Yu, Wei & Liu, Chao & Guan, Zhengjun, 2024. "Effects of non-condensable gas on thermodynamic performance of transcritical organic Rankine cycle," Energy, Elsevier, vol. 292(C).
    5. Peter L. Borland & Kevin McDonnell & Mary Harty, 2023. "Assessment of the Potential to Use the Expelled Heat Energy from a Typical Data Centre in Ireland for Alternative Farming Methods," Energies, MDPI, vol. 16(18), pages 1-32, September.
    6. Victoria Kornienko & Mykola Radchenko & Andrii Radchenko & Hanna Koshlak & Roman Radchenko, 2023. "Enhancing the Fuel Efficiency of Cogeneration Plants by Fuel Oil Afterburning in Exhaust Gas before Boilers," Energies, MDPI, vol. 16(18), pages 1-20, September.
    7. Xin, Yong-Lin & Sun, Qing-Han & Zhao, Tian & Li, Xia & Chen, Qun, 2023. "A categorized and decomposed algorithm for thermal system simulation based on generalized benders decomposition," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zefeng & Han, Wei & Zhang, Na & Su, Bosheng & Gan, Zhongxue & Jin, Hongguang, 2018. "Effects of different alternative control methods for gas turbine on the off-design performance of a trigeneration system," Applied Energy, Elsevier, vol. 215(C), pages 227-236.
    2. Chen, W.D. & Chua, K.J., 2022. "A novel and optimized operation strategy map for CCHP systems considering optimal thermal energy utilization," Energy, Elsevier, vol. 259(C).
    3. Li, Jian & Liu, Qiang & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Di, Jiawei, 2017. "Optimized liquid-separated thermodynamic states for working fluids of organic Rankine cycles with liquid-separated condensation," Energy, Elsevier, vol. 141(C), pages 652-660.
    4. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2017. "Optimal design, operation and analytical criteria for determining optimal operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller," Energy, Elsevier, vol. 139(C), pages 1052-1065.
    5. Yang, Min-Hsiung & Yeh, Rong-Hua, 2016. "Economic performances optimization of an organic Rankine cycle system with lower global warming potential working fluids in geothermal application," Renewable Energy, Elsevier, vol. 85(C), pages 1201-1213.
    6. Yang, Cheng & Huang, Zhifeng & Ma, Xiaoqian, 2018. "Comparative study on off-design characteristics of CHP based on GTCC under alternative operating strategy for gas turbine," Energy, Elsevier, vol. 145(C), pages 823-838.
    7. Zhang, Na & Wang, Zefeng & Lior, Noam & Han, Wei, 2018. "Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system," Applied Energy, Elsevier, vol. 219(C), pages 179-186.
    8. Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
    9. Ayachi, Fadhel & Ksayer, Elias Boulawz & Neveu, Pierre & Zoughaib, Assaad, 2016. "Experimental investigation and modeling of a hermetic scroll expander," Applied Energy, Elsevier, vol. 181(C), pages 256-267.
    10. Wang, Dabiao & Ma, Yuezheng & Tian, Ran & Duan, Jie & Hu, Busong & Shi, Lin, 2018. "Thermodynamic evaluation of an ORC system with a Low Pressure Saturated Steam heat source," Energy, Elsevier, vol. 149(C), pages 375-385.
    11. Kang, Do Won & Kim, Tong Seop, 2018. "Model-based performance diagnostics of heavy-duty gas turbines using compressor map adaptation," Applied Energy, Elsevier, vol. 212(C), pages 1345-1359.
    12. Wang, Zefeng & Han, Wei & Zhang, Na & Gan, Zhongxue & Sun, Jie & Jin, Hongguang, 2018. "Energy level difference graphic analysis method of combined cooling, heating and power systems," Energy, Elsevier, vol. 160(C), pages 1069-1077.
    13. Su, Bosheng & Han, Wei & Qu, Wanjun & Liu, Changchun & Jin, Hongguang, 2018. "A new hybrid photovoltaic/thermal and liquid desiccant system for trigeneration application," Applied Energy, Elsevier, vol. 226(C), pages 808-818.
    14. Zhao, Xin & Zheng, Wenyu & Hou, Zhihua & Chen, Heng & Xu, Gang & Liu, Wenyi & Chen, Honggang, 2022. "Economic dispatch of multi-energy system considering seasonal variation based on hybrid operation strategy," Energy, Elsevier, vol. 238(PA).
    15. Bollas, Konstantinos & Banihabib, Reyhaneh & Assadi, Mohsen & Kalfas, Anestis, 2024. "Optimal operating scenario and performance comparison of biomass-fueled externally-fired microturbine," Energy, Elsevier, vol. 296(C).
    16. Pei Lu & Zheng Liang & Xianglong Luo & Yangkai Xia & Jin Wang & Kaihuang Chen & Yingzong Liang & Jianyong Chen & Zhi Yang & Jiacheng He & Ying Chen, 2023. "Design and Optimization of Organic Rankine Cycle Based on Heat Transfer Enhancement and Novel Heat Exchanger: A Review," Energies, MDPI, vol. 16(3), pages 1-34, January.
    17. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    18. Zhang, Ji & Hu, Xudong & Wu, Ding & Huang, Xiaohui & Wang, Xuehui & Yang, Yan & Wen, Chuang, 2023. "A comparative study on design and performance evaluation of Organic Rankine Cycle (ORC) under different two-phase heat transfer correlations," Applied Energy, Elsevier, vol. 350(C).
    19. Liu, Chao & Wang, Shukun & Zhang, Cheng & Li, Qibin & Xu, Xiaoxiao & Huo, Erguang, 2019. "Experimental study of micro-scale organic Rankine cycle system based on scroll expander," Energy, Elsevier, vol. 188(C).
    20. Luo, Junwei & Lu, Pei & Chen, Kaihuang & Luo, Xianglong & Chen, Jianyong & Liang, Yingzong & Yang, Zhi & Chen, Ying, 2023. "Experimental and simulation investigation on the heat exchangers in an ORC under various heat source/sink conditions," Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.