IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v292y2021ics0306261921003688.html
   My bibliography  Save this article

Optimization of load dispatch strategies for an islanded microgrid connected with renewable energy sources

Author

Listed:
  • Fatin Ishraque, Md.
  • Shezan, Sk. A.
  • Ali, M.M.
  • Rashid, M.M.

Abstract

This paper evaluates the design and optimization of an islanded hybrid microgrid for various load dispatch strategies by assessing the optimal sizing of each component, the power system responses and different cost analysis of the microgrid. Four divisions of the northern side of Bangladesh namely, Mymensingh, Rangpur, Rajshahi and Sylhet hybrid microgrids incorporating solar PV, wind turbine, battery storage, diesel generator and a load of 27.31 kW have been optimized for five different dispatch strategies: (i) Load Following, (ii) Cycle Charging, (iii) Generator Order, (iv) Combined Dispatch and (v) HOMER predictive dispatch strategy. The proposed microgrids have been optimized to reduce the Net Present Cost, CO2 emission and Levelized Cost of Energy. All the five dispatch strategies for the four microgrids have been analyzed in HOMER Pro, and subsequently, the power system responses and feasibility analysis of the microgrids have been performed in MATLAB Simulink. The results obtained in this study provide a guideline to estimate component sizes and costs for the optimal operation of the proposed microgrids under various load dispatch scenarios. The simulation results suggest that the Load Following is the best dispatch strategy having the lowest Net Present Cost of 149,794 USD, Levelized Cost of Energy of 0.204 USD/kWh, Operating cost of 3,698 USD and CO2 emission of 3,298 kg/year with a stable power system response. Combined Dispatch is found to be the worst strategy having the maximum Levelized Cost of Energy of 0.532 USD/kWh, Net Present Cost of 415,030 USD, Operating cost of 15,394 USD and Green House Gas emissions of 17,266 kg/year and comparatively poor power system responses. Finally, a brief comparative analysis has been presented between designed microgrid system and other hybrid energy systems and conventional power stations in terms of Levelized Cost of Energy, Net Present Cost, CO2 emissions and operating cost.

Suggested Citation

  • Fatin Ishraque, Md. & Shezan, Sk. A. & Ali, M.M. & Rashid, M.M., 2021. "Optimization of load dispatch strategies for an islanded microgrid connected with renewable energy sources," Applied Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:appene:v:292:y:2021:i:c:s0306261921003688
    DOI: 10.1016/j.apenergy.2021.116879
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921003688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Hongxing & Wei, Zhou & Chengzhi, Lou, 2009. "Optimal design and techno-economic analysis of a hybrid solar-wind power generation system," Applied Energy, Elsevier, vol. 86(2), pages 163-169, February.
    2. Wu, Zhou & Tazvinga, Henerica & Xia, Xiaohua, 2015. "Demand side management of photovoltaic-battery hybrid system," Applied Energy, Elsevier, vol. 148(C), pages 294-304.
    3. Moretti, L. & Polimeni, S. & Meraldi, L. & Raboni, P. & Leva, S. & Manzolini, G., 2019. "Assessing the impact of a two-layer predictive dispatch algorithm on design and operation of off-grid hybrid microgrids," Renewable Energy, Elsevier, vol. 143(C), pages 1439-1453.
    4. Nosrat, Amir & Pearce, Joshua M., 2011. "Dispatch strategy and model for hybrid photovoltaic and trigeneration power systems," Applied Energy, Elsevier, vol. 88(9), pages 3270-3276.
    5. Shezan Arefin, 2020. "Optimization Techniques of Islanded Hybrid Microgrid System," Chapters, in: Mansour Al Qubeissi & Ahmad El-Kharouf & Hakan Serhad Soyhan (ed.), Renewable Energy - Resources, Challenges and Applications, IntechOpen.
    6. Ke Jiang & Feng Wu & Xuanjun Zong & Linjun Shi & Keman Lin, 2019. "Distributed Dynamic Economic Dispatch of an Isolated AC/DC Hybrid Microgrid Based on a Finite-Step Consensus Algorithm," Energies, MDPI, vol. 12(24), pages 1-18, December.
    7. Zhao, Bo & Xue, Meidong & Zhang, Xuesong & Wang, Caisheng & Zhao, Junhui, 2015. "An MAS based energy management system for a stand-alone microgrid at high altitude," Applied Energy, Elsevier, vol. 143(C), pages 251-261.
    8. Xiong, Guojiang & Shi, Dongyuan & Duan, Xianzhong, 2013. "Multi-strategy ensemble biogeography-based optimization for economic dispatch problems," Applied Energy, Elsevier, vol. 111(C), pages 801-811.
    9. Barbaro, Marco & Castro, Rui, 2020. "Design optimisation for a hybrid renewable microgrid: Application to the case of Faial island, Azores archipelago," Renewable Energy, Elsevier, vol. 151(C), pages 434-445.
    10. Wu, Chuanshen & Gao, Shan & Liu, Yu & Song, Tiancheng E. & Han, Haiteng, 2021. "A model predictive control approach in microgrid considering multi-uncertainty of electric vehicles," Renewable Energy, Elsevier, vol. 163(C), pages 1385-1396.
    11. Liu, Guodong & Jiang, Tao & Ollis, Thomas B. & Zhang, Xiaohu & Tomsovic, Kevin, 2019. "Distributed energy management for community microgrids considering network operational constraints and building thermal dynamics," Applied Energy, Elsevier, vol. 239(C), pages 83-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    2. Md. Fatin Ishraque & Akhlaqur Rahman & Sk. A. Shezan & GM Shafiullah, 2022. "Operation and Assessment of a Microgrid for Maldives: Islanded and Grid-Tied Mode," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    3. Pavić, Ivan & Čović, Nikolina & Pandžić, Hrvoje, 2022. "PV–battery-hydrogen plant: Cutting green hydrogen costs through multi-market positioning," Applied Energy, Elsevier, vol. 328(C).
    4. Yue Cao & Tao Li & Tianyu He & Yuwei Wei & Ming Li & Fengqi Si, 2022. "Multiobjective Load Dispatch for Coal-Fired Power Plants under Renewable-Energy Accommodation Based on a Nondominated-Sorting Grey Wolf Optimizer Algorithm," Energies, MDPI, vol. 15(8), pages 1-19, April.
    5. Md. Fatin Ishraque & Sk. A. Shezan & Md. Sohel Rana & S. M. Muyeen & Akhlaqur Rahman & Liton Chandra Paul & Md. Shafiul Islam, 2021. "Optimal Sizing and Assessment of a Renewable Rich Standalone Hybrid Microgrid Considering Conventional Dispatch Methodologies," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    6. Juan Martínez-Nolasco & Víctor Sámano-Ortega & Heriberto Rodriguez-Estrada & Mauro Santoyo-Mora & Elias Rodriguez-Segura & José Zavala-Villalpando, 2024. "Controller Hardware in the Loop Platform for Evaluating Current-Sharing and Hot-Swap in Microgrids," Energies, MDPI, vol. 17(15), pages 1-17, August.
    7. Wang, Xuebin & Song, Wenle & Wu, Haotian & Liang, Haiping & Saboor, Ahmed, 2022. "Microgrid operation relying on economic problems considering renewable sources, storage system, and demand-side management using developed gray wolf optimization algorithm," Energy, Elsevier, vol. 248(C).
    8. Yang, Xiaohui & Wang, Xiaopeng & Leng, Zhengyang & Deng, Yeheng & Deng, Fuwei & Zhang, Zhonglian & Yang, Li & Liu, Xiaoping, 2023. "An optimized scheduling strategy combining robust optimization and rolling optimization to solve the uncertainty of RES-CCHP MG," Renewable Energy, Elsevier, vol. 211(C), pages 307-325.
    9. Mehrdad Tahmasebi & Jagadeesh Pasupuleti & Fatemeh Mohamadian & Mohammad Shakeri & Josep M. Guerrero & M. Reyasudin Basir Khan & Muhammad Shahzad Nazir & Amir Safari & Najmeh Bazmohammadi, 2021. "Optimal Operation of Stand-Alone Microgrid Considering Emission Issues and Demand Response Program Using Whale Optimization Algorithm," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    10. Jun Dong & Yaoyu Zhang & Yuanyuan Wang & Yao Liu, 2021. "A Two-Stage Optimal Dispatching Model for Micro Energy Grid Considering the Dual Goals of Economy and Environmental Protection under CVaR," Sustainability, MDPI, vol. 13(18), pages 1-28, September.
    11. Sk. A. Shezan & Innocent Kamwa & Md. Fatin Ishraque & S. M. Muyeen & Kazi Nazmul Hasan & R. Saidur & Syed Muhammad Rizvi & Md Shafiullah & Fahad A. Al-Sulaiman, 2023. "Evaluation of Different Optimization Techniques and Control Strategies of Hybrid Microgrid: A Review," Energies, MDPI, vol. 16(4), pages 1-30, February.
    12. Mousavi, Seyed Ali & Toopshekan, Ashkan & Mehrpooya, Mehdi & Delpisheh, Mostafa, 2023. "Comprehensive exergetic performance assessment and techno-financial optimization of off-grid hybrid renewable configurations with various dispatch strategies and solar tracking systems," Renewable Energy, Elsevier, vol. 210(C), pages 40-63.
    13. Marcelino, C.G. & Leite, G.M.C. & Wanner, E.F. & Jiménez-Fernández, S. & Salcedo-Sanz, S., 2023. "Evaluating the use of a Net-Metering mechanism in microgrids to reduce power generation costs with a swarm-intelligent algorithm," Energy, Elsevier, vol. 266(C).
    14. Güven, Aykut Fatih & Yörükeren, Nuran & Samy, Mohamed Mahmoud, 2022. "Design optimization of a stand-alone green energy system of university campus based on Jaya-Harmony Search and Ant Colony Optimization algorithms approaches," Energy, Elsevier, vol. 253(C).
    15. Stanley, Andrew P.J. & King, Jennifer, 2022. "Optimizing the physical design and layout of a resilient wind, solar, and storage hybrid power plant," Applied Energy, Elsevier, vol. 317(C).
    16. Md. Fatin Ishraque & Akhlaqur Rahman & Sk. A. Shezan & S. M. Muyeen, 2022. "Grid Connected Microgrid Optimization and Control for a Coastal Island in the Indian Ocean," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    17. Al-Orabi, Ahmed M. & Osman, Mohamed G. & Sedhom, Bishoy E., 2023. "Analysis of the economic and technological viability of producing green hydrogen with renewable energy sources in a variety of climates to reduce CO2 emissions: A case study in Egypt," Applied Energy, Elsevier, vol. 338(C).
    18. Yujiang Ye & Ruifeng Shi & Yuqin Gao & Xiaolei Ma & Di Wang, 2023. "Two-Stage Optimal Scheduling of Highway Self-Consistent Energy System in Western China," Energies, MDPI, vol. 16(5), pages 1-18, March.
    19. Myada Shadoul & Rashid Al Abri & Hassan Yousef & Abdullah Al Shereiqi, 2024. "Designing a Dispatch Engine for Hybrid Renewable Power Stations Using a Mixed-Integer Linear Programming Technique," Energies, MDPI, vol. 17(13), pages 1-27, July.
    20. Md. Fatin Ishraque & Akhlaqur Rahman & Sk. A. Shezan & G. M. Shafiullah & Ali H Alenezi & Md Delwar Hossen & Noor E Nahid Bintu, 2024. "Design Optimization of a Grid-Tied Hybrid System for a Department at a University with a Dispatch Strategy-Based Assessment," Sustainability, MDPI, vol. 16(7), pages 1-17, March.
    21. Ahmed S. Menesy & Hamdy M. Sultan & Ibrahim O. Habiballah & Hasan Masrur & Kaisar R. Khan & Muhammad Khalid, 2023. "Optimal Configuration of a Hybrid Photovoltaic/Wind Turbine/Biomass/Hydro-Pumped Storage-Based Energy System Using a Heap-Based Optimization Algorithm," Energies, MDPI, vol. 16(9), pages 1-26, April.
    22. Izabela Rojek & Dariusz Mikołajewski & Adam Mroziński & Marek Macko, 2023. "Machine Learning- and Artificial Intelligence-Derived Prediction for Home Smart Energy Systems with PV Installation and Battery Energy Storage," Energies, MDPI, vol. 16(18), pages 1-26, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Fatin Ishraque & Sk. A. Shezan & Md. Sohel Rana & S. M. Muyeen & Akhlaqur Rahman & Liton Chandra Paul & Md. Shafiul Islam, 2021. "Optimal Sizing and Assessment of a Renewable Rich Standalone Hybrid Microgrid Considering Conventional Dispatch Methodologies," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    2. Sk. A. Shezan & Innocent Kamwa & Md. Fatin Ishraque & S. M. Muyeen & Kazi Nazmul Hasan & R. Saidur & Syed Muhammad Rizvi & Md Shafiullah & Fahad A. Al-Sulaiman, 2023. "Evaluation of Different Optimization Techniques and Control Strategies of Hybrid Microgrid: A Review," Energies, MDPI, vol. 16(4), pages 1-30, February.
    3. Myeong Jin Ko & Yong Shik Kim & Min Hee Chung & Hung Chan Jeon, 2015. "Multi-Objective Optimization Design for a Hybrid Energy System Using the Genetic Algorithm," Energies, MDPI, vol. 8(4), pages 1-26, April.
    4. Ning Zhang & Nien-Che Yang & Jian-Hong Liu, 2021. "Optimal Sizing of PV/Wind/Battery Hybrid Microgrids Considering Lifetime of Battery Banks," Energies, MDPI, vol. 14(20), pages 1-13, October.
    5. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    6. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    7. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    8. Ghulam Abbas & Irfan Ahmad Khan & Naveed Ashraf & Muhammad Taskeen Raza & Muhammad Rashad & Raheel Muzzammel, 2023. "On Employing a Constrained Nonlinear Optimizer to Constrained Economic Dispatch Problems," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    9. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    10. Sourav Khanna & Victor Becerra & Adib Allahham & Damian Giaouris & Jamie M. Foster & Keiron Roberts & David Hutchinson & Jim Fawcett, 2020. "Demand Response Model Development for Smart Households Using Time of Use Tariffs and Optimal Control—The Isle of Wight Energy Autonomous Community Case Study," Energies, MDPI, vol. 13(3), pages 1-27, January.
    11. Xiangyuan Zheng & Huadong Zheng & Yu Lei & Yi Li & Wei Li, 2020. "An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions," Energies, MDPI, vol. 13(3), pages 1-23, January.
    12. Shou, Chunhui & Luo, Zhongyang & Wang, Tao & Shen, Weidong & Rosengarten, Gary & Wei, Wei & Wang, Cheng & Ni, Mingjiang & Cen, Kefa, 2012. "Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems," Applied Energy, Elsevier, vol. 92(C), pages 298-306.
    13. Yang, Fei & Xia, Xiaohua, 2017. "Techno-economic and environmental optimization of a household photovoltaic-battery hybrid power system within demand side management," Renewable Energy, Elsevier, vol. 108(C), pages 132-143.
    14. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    15. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2021. "Multi-objective optimization and evaluation of hybrid CCHP systems for different building types," Energy, Elsevier, vol. 215(PA).
    16. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    17. Guodong Liu & Maximiliano F. Ferrari & Thomas B. Ollis & Kevin Tomsovic, 2022. "An MILP-Based Distributed Energy Management for Coordination of Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-20, September.
    18. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    19. Li, Yongliang & Wang, Xiang & Li, Dacheng & Ding, Yulong, 2012. "A trigeneration system based on compressed air and thermal energy storage," Applied Energy, Elsevier, vol. 99(C), pages 316-323.
    20. Zejun Tong & Chun Zhang & Xiaotai Wu & Pengcheng Gao & Shuang Wu & Haoyu Li, 2023. "Economic Optimization Control Method of Grid-Connected Microgrid Based on Improved Pinning Consensus," Energies, MDPI, vol. 16(3), pages 1-31, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:292:y:2021:i:c:s0306261921003688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.