IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p407-d1569896.html
   My bibliography  Save this article

Advanced Deep Learning Algorithms for Energy Optimization of Smart Cities

Author

Listed:
  • Izabela Rojek

    (Faculty of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland)

  • Dariusz Mikołajewski

    (Faculty of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland)

  • Krzysztof Galas

    (Faculty of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland)

  • Adrianna Piszcz

    (Faculty of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland)

Abstract

Advanced deep learning algorithms play a key role in optimizing energy usage in smart cities, leveraging massive datasets to increase efficiency and sustainability. These algorithms analyze real-time data from sensors and IoT devices to predict energy demand, enabling dynamic load balancing and reducing waste. Reinforcement learning models optimize power distribution by learning from historical patterns and adapting to changes in energy usage in real time. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) facilitate detailed analysis of spatial and temporal data to better predict energy usage. Generative adversarial networks (GANs) are used to simulate energy usage scenarios, supporting strategic planning and anomaly detection. Federated learning ensures privacy-preserving data sharing in distributed energy systems, promoting collaboration without compromising security. These technologies are driving the transformation towards sustainable and energy-efficient urban environments, meeting the growing demands of modern smart cities. However, there is a view that if the pace of development is maintained with large amounts of data, the computational/energy costs may exceed the benefits. The article aims to conduct a comparative analysis and assess the development potential of this group of technologies, taking into account energy efficiency.

Suggested Citation

  • Izabela Rojek & Dariusz Mikołajewski & Krzysztof Galas & Adrianna Piszcz, 2025. "Advanced Deep Learning Algorithms for Energy Optimization of Smart Cities," Energies, MDPI, vol. 18(2), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:407-:d:1569896
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/407/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/407/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berny Carrera & Kwanho Kim, 2023. "A Regression Framework for Energy Consumption in Smart Cities with Encoder-Decoder Recurrent Neural Networks," Energies, MDPI, vol. 16(22), pages 1-24, November.
    2. Fernando Ulloa-Vásquez & Victor Heredia-Figueroa & Cristóbal Espinoza-Iriarte & José Tobar-Ríos & Fernanda Aguayo-Reyes & Dante Carrizo & Luis García-Santander, 2024. "Model for Identification of Electrical Appliance and Determination of Patterns Using High-Resolution Wireless Sensor NETWORK for the Efficient Home Energy Consumption Based on Deep Learning," Energies, MDPI, vol. 17(6), pages 1-19, March.
    3. Sabina-Cristiana Necula, 2023. "Assessing the Potential of Artificial Intelligence in Advancing Clean Energy Technologies in Europe: A Systematic Review," Energies, MDPI, vol. 16(22), pages 1-24, November.
    4. César Ramírez-Márquez & Thelma Posadas-Paredes & Alma Yunuen Raya-Tapia & José María Ponce-Ortega, 2024. "Natural Resource Optimization and Sustainability in Society 5.0: A Comprehensive Review," Resources, MDPI, vol. 13(2), pages 1-20, January.
    5. Wang, H.Z. & Wang, G.B. & Li, G.Q. & Peng, J.C. & Liu, Y.T., 2016. "Deep belief network based deterministic and probabilistic wind speed forecasting approach," Applied Energy, Elsevier, vol. 182(C), pages 80-93.
    6. Mateusz Zareba & Szymon Cogiel & Tomasz Danek & Elzbieta Weglinska, 2024. "Machine Learning Techniques for Spatio-Temporal Air Pollution Prediction to Drive Sustainable Urban Development in the Era of Energy and Data Transformation," Energies, MDPI, vol. 17(11), pages 1-13, June.
    7. Jason Runge & Radu Zmeureanu, 2019. "Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review," Energies, MDPI, vol. 12(17), pages 1-27, August.
    8. Izabela Rojek & Dariusz Mikołajewski & Adam Mroziński & Marek Macko, 2023. "Machine Learning- and Artificial Intelligence-Derived Prediction for Home Smart Energy Systems with PV Installation and Battery Energy Storage," Energies, MDPI, vol. 16(18), pages 1-26, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    2. Hu, Jiaxiang & Hu, Weihao & Cao, Di & Sun, Xinwu & Chen, Jianjun & Huang, Yuehui & Chen, Zhe & Blaabjerg, Frede, 2024. "Probabilistic net load forecasting based on transformer network and Gaussian process-enabled residual modeling learning method," Renewable Energy, Elsevier, vol. 225(C).
    3. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    4. Mojtaba Qolipour & Ali Mostafaeipour & Mohammad Saidi-Mehrabad & Hamid R Arabnia, 2019. "Prediction of wind speed using a new Grey-extreme learning machine hybrid algorithm: A case study," Energy & Environment, , vol. 30(1), pages 44-62, February.
    5. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    6. Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.
    7. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    8. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    9. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    10. Wang, Jujie & Li, Yaning, 2018. "Multi-step ahead wind speed prediction based on optimal feature extraction, long short term memory neural network and error correction strategy," Applied Energy, Elsevier, vol. 230(C), pages 429-443.
    11. Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).
    12. Zhang, Shuai & Chen, Yong & Xiao, Jiuhong & Zhang, Wenyu & Feng, Ruijun, 2021. "Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism," Renewable Energy, Elsevier, vol. 174(C), pages 688-704.
    13. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    14. Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
    15. Wang, Jianzhou & Wang, Shuai & Li, Zhiwu, 2021. "Wind speed deterministic forecasting and probabilistic interval forecasting approach based on deep learning, modified tunicate swarm algorithm, and quantile regression," Renewable Energy, Elsevier, vol. 179(C), pages 1246-1261.
    16. Anthony Mouraud, 2017. "Innovative time series forecasting: auto regressive moving average vs deep networks," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 4(3), pages 282-293, March.
    17. Runge, Jason & Saloux, Etienne, 2023. "A comparison of prediction and forecasting artificial intelligence models to estimate the future energy demand in a district heating system," Energy, Elsevier, vol. 269(C).
    18. Wang, Sen & Qin, Chaoxu & Feng, Qihong & Javadpour, Farzam & Rui, Zhenhua, 2021. "A framework for predicting the production performance of unconventional resources using deep learning," Applied Energy, Elsevier, vol. 295(C).
    19. Huaizhi Wang & Xian Zhang & Qing Li & Guibin Wang & Hui Jiang & Jianchun Peng, 2018. "Recursive Method for Distribution System Reliability Evaluation," Energies, MDPI, vol. 11(10), pages 1-15, October.
    20. Yang, Weifei & Xiao, Changlai & Zhang, Zhihao & Liang, Xiujuan, 2022. "Identification of the formation temperature field of the southern Songliao Basin, China based on a deep belief network," Renewable Energy, Elsevier, vol. 182(C), pages 32-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:407-:d:1569896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.