IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5812-d1210887.html
   My bibliography  Save this article

Electrification of Offshore Oil and Gas Production: Architectures and Power Conversion

Author

Listed:
  • Anindya Ray

    (Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
    These authors contributed equally to this work.)

  • Kaushik Rajashekara

    (Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
    These authors contributed equally to this work.)

Abstract

Subsea oil and gas (O&G) exploration demands significantly high power to supply the electrical loads for extraction and pumping of the oil and gas. The energy demand is usually met by fossil fuel combustion-based platform generation, which releases a substantial volume of greenhouse gases including carbon dioxide (CO 2 ) and methane into the atmosphere. The severity of the resulting adverse environmental impact has increased the focus on more sustainable and environment-friendly power processing for deepwater O&G production. The most feasible way toward sustainable power processing lies in the complete electrification of subsea systems. This paper aims to dive deep into the technology trends that enable an all-electric subsea grid and the real-world challenges that hinder the proliferation of these technologies. Two main enabling technologies are the transmission of electrical power from the onshore electrical grid to the subsea petroleum installations or the integration of offshore renewable energy sources to form a microgrid to power the platform-based and subsea loads. This paper reviews the feasible power generation sources for interconnection with subsea oil installations. Next, this interconnection’s possible power transmission and distribution architectures are presented, including auxiliary power processing systems like subsea electric heating. As the electrical fault is one of the major challenges for DC systems, the fault protection topologies for the subsea HVDC architectures are also reviewed. A brief discussion and comparison of the reviewed technologies are presented. Finally, the critical findings are summarized in the conclusion section.

Suggested Citation

  • Anindya Ray & Kaushik Rajashekara, 2023. "Electrification of Offshore Oil and Gas Production: Architectures and Power Conversion," Energies, MDPI, vol. 16(15), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5812-:d:1210887
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5812/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5812/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yessica Arellano-Prieto & Elvia Chavez-Panduro & Pierluigi Salvo Rossi & Francesco Finotti, 2022. "Energy Storage Solutions for Offshore Applications," Energies, MDPI, vol. 15(17), pages 1-34, August.
    2. Christoffer Fjellstedt & Md Imran Ullah & Johan Forslund & Erik Jonasson & Irina Temiz & Karin Thomas, 2022. "A Review of AC and DC Collection Grids for Offshore Renewable Energy with a Qualitative Evaluation for Marine Energy Resources," Energies, MDPI, vol. 15(16), pages 1-26, August.
    3. Ermando Petracca & Emilio Faraggiana & Alberto Ghigo & Massimo Sirigu & Giovanni Bracco & Giuliana Mattiazzo, 2022. "Design and Techno-Economic Analysis of a Novel Hybrid Offshore Wind and Wave Energy System," Energies, MDPI, vol. 15(8), pages 1-28, April.
    4. Cullinane, M. & Judge, F. & O'Shea, M. & Thandayutham, K. & Murphy, J., 2022. "Subsea superconductors: The future of offshore renewable energy transmission?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Nguyen, Tuong-Van & Voldsund, Mari & Breuhaus, Peter & Elmegaard, Brian, 2016. "Energy efficiency measures for offshore oil and gas platforms," Energy, Elsevier, vol. 117(P2), pages 325-340.
    6. Nguyen, Tuong-Van & Tock, Laurence & Breuhaus, Peter & Maréchal, François & Elmegaard, Brian, 2016. "CO2-mitigation options for the offshore oil and gas sector," Applied Energy, Elsevier, vol. 161(C), pages 673-694.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anan Zhang & Hong Zhang & Meysam Qadrdan & Wei Yang & Xiaolong Jin & Jianzhong Wu, 2019. "Optimal Planning of Integrated Energy Systems for Offshore Oil Extraction and Processing Platforms," Energies, MDPI, vol. 12(4), pages 1-28, February.
    2. Diban, Pitchaimuthu & Foo, Dominic C.Y., 2018. "Targeting and design of heating utility system for offshore platform," Energy, Elsevier, vol. 146(C), pages 98-111.
    3. Allahyarzadeh-Bidgoli, Ali & Salviano, Leandro Oliveira & Dezan, Daniel Jonas & de Oliveira Junior, Silvio & Yanagihara, Jurandir Itizo, 2018. "Energy optimization of an FPSO operating in the Brazilian Pre-salt region," Energy, Elsevier, vol. 164(C), pages 390-399.
    4. Luca Riboldi & Steve Völler & Magnus Korpås & Lars O. Nord, 2019. "An Integrated Assessment of the Environmental and Economic Impact of Offshore Oil Platform Electrification," Energies, MDPI, vol. 12(11), pages 1-21, June.
    5. Vijayaraja Loganathan & Dhanasekar Ravikumar & Rupa Kesavan & Kanakasri Venkatesan & Raadha Saminathan & Raju Kannadasan & Mahalingam Sudhakaran & Mohammed H. Alsharif & Zong Woo Geem & Junhee Hong, 2022. "A Case Study on Renewable Energy Sources, Power Demand, and Policies in the States of South India—Development of a Thermoelectric Model," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
    6. Wiegner, J.F. & Andreasson, L.M. & Kusters, J.E.H. & Nienhuis, R.M., 2024. "Interdisciplinary perspectives on offshore energy system integration in the North Sea: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    7. Dario Maradin & Bojana Olgić Draženović & Saša Čegar, 2023. "The Efficiency of Offshore Wind Energy Companies in the European Countries: A DEA Approach," Energies, MDPI, vol. 16(9), pages 1-16, April.
    8. Deng, Han & Skaugen, Geir & Næss, Erling & Zhang, Mingjie & Øiseth, Ole A., 2021. "A novel methodology for design optimization of heat recovery steam generators with flow-induced vibration analysis," Energy, Elsevier, vol. 226(C).
    9. Alberto Ghigo & Emilio Faraggiana & Massimo Sirigu & Giuliana Mattiazzo & Giovanni Bracco, 2022. "Design and Analysis of a Floating Photovoltaic System for Offshore Installation: The Case Study of Lampedusa," Energies, MDPI, vol. 15(23), pages 1-30, November.
    10. Eyni, Leila & Stanko, Milan & Schümann, Heiner, 2022. "Methods for early-phase planning of offshore fields considering environmental performance," Energy, Elsevier, vol. 256(C).
    11. Nguyen, Tuong-Van & de Oliveira Júnior, Silvio, 2018. "Life performance of oil and gas platforms for various production profiles and feed compositions," Energy, Elsevier, vol. 161(C), pages 583-594.
    12. Steven Lecompte & Oyeniyi A. Oyewunmi & Christos N. Markides & Marija Lazova & Alihan Kaya & Martijn Van den Broek & Michel De Paepe, 2017. "Case Study of an Organic Rankine Cycle (ORC) for Waste Heat Recovery from an Electric Arc Furnace (EAF)," Energies, MDPI, vol. 10(5), pages 1-16, May.
    13. Ran Tao & Jingpeng Yue & Zhenlin Huang & Ranran An & Zou Li & Junfeng Liu, 2022. "A High-Gain DC Side Converter with a Ripple-Free Input Current for Offshore Wind Energy Systems," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    14. Wang, Tianyuan & Zhu, Kai & Cao, Feifei & Li, Demin & Gong, Haoxiang & Li, Yanni & Shi, Hongda, 2024. "A coupling framework between OpenFAST and WEC-Sim. Part I: Validation and dynamic response analysis of IEA-15-MW-UMaine FOWT," Renewable Energy, Elsevier, vol. 225(C).
    15. Yang, Yang & Zhou, Ling & Hang, Jianwei & Du, Danyang & Shi, Weidong & He, Zhaoming, 2021. "Energy characteristics and optimal design of diffuser meridian in an electrical submersible pump," Renewable Energy, Elsevier, vol. 167(C), pages 718-727.
    16. Asmita Ajay Rathod & Balaji Subramanian, 2022. "Scrutiny of Hybrid Renewable Energy Systems for Control, Power Management, Optimization and Sizing: Challenges and Future Possibilities," Sustainability, MDPI, vol. 14(24), pages 1-35, December.
    17. Bechlenberg, Alva & Luning, Egbert A. & Saltık, M. Bahadır & Szirbik, Nick B. & Jayawardhana, Bayu & Vakis, Antonis I., 2024. "Renewable energy system sizing with power generation and storage functions accounting for its optimized activity on multiple electricity markets," Applied Energy, Elsevier, vol. 360(C).
    18. da Silva, Julio A.M. & de Oliveira Junior, S., 2018. "Unit exergy cost and CO2 emissions of offshore petroleum production," Energy, Elsevier, vol. 147(C), pages 757-766.
    19. Elvis Dze Achuo, 2022. "The nexus between crude oil price shocks and environmental quality: empirical evidence from sub-Saharan Africa," SN Business & Economics, Springer, vol. 2(7), pages 1-15, July.
    20. Liaw, Kim Leong & Kurnia, Jundika C. & Lai, Wen Kang & Ong, Khai Chuin & Zar, Muhammad Aliff B. Mohd Ali & Muhammad, M. Fadhli B. & Firmansyah,, 2023. "Optimization of a novel impulse gas turbine nozzle and blades design utilizing Taguchi method for micro-scale power generation," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5812-:d:1210887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.