IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2739-d789813.html
   My bibliography  Save this article

Design and Techno-Economic Analysis of a Novel Hybrid Offshore Wind and Wave Energy System

Author

Listed:
  • Ermando Petracca

    (Marine Offshore Renewable Energy Lab (MOREnergy Lab), Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy)

  • Emilio Faraggiana

    (Marine Offshore Renewable Energy Lab (MOREnergy Lab), Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy)

  • Alberto Ghigo

    (Marine Offshore Renewable Energy Lab (MOREnergy Lab), Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy)

  • Massimo Sirigu

    (Marine Offshore Renewable Energy Lab (MOREnergy Lab), Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy)

  • Giovanni Bracco

    (Marine Offshore Renewable Energy Lab (MOREnergy Lab), Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy)

  • Giuliana Mattiazzo

    (Marine Offshore Renewable Energy Lab (MOREnergy Lab), Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy)

Abstract

In the past few years, advanced technologies such as floating offshore wind turbines (FOWT) and wave energy converters (WECs) have been developed. As demonstrated by the innovative hybrid platform Poseidon, the feasibility of combining floating wind turbines and wave energy converters has already been explored. Furthermore, diversification of offshore renewable energy technologies reduces power fluctuations and lowers investment costs. This paper focuses on the development of an integrated wind and wave platform and the creation of a numerical model to evaluate the system performance for the Belmullet site. The novel concept consists of the semi-submersible Nautilus platform, integrated with four-point absorbers. A hydro-servo-aero time-domain model, combining WEC-Sim with an in-house wind turbine model, simulated the device motion and estimated the power generated. The performance of the Wave Energy Converters (WECs) was optimised based on their Power Take Off (PTO) damping. Finally, the hybrid concept was compared with the simple FOWT concerning the energy produced, Levelized Cost of Energy (LCOE) and hydrodynamic stability. The hybrid configuration proved to be a promising solution with 10% lower LCOE and improved hydrodynamic stability evaluated in terms of nacelle acceleration and platform pitch motion. These results show that wind and wave could be one of the best solutions for the future of the marine energy sector and the energy transition.

Suggested Citation

  • Ermando Petracca & Emilio Faraggiana & Alberto Ghigo & Massimo Sirigu & Giovanni Bracco & Giuliana Mattiazzo, 2022. "Design and Techno-Economic Analysis of a Novel Hybrid Offshore Wind and Wave Energy System," Energies, MDPI, vol. 15(8), pages 1-28, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2739-:d:789813
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2739/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2739/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wanan Sheng & Tony Lewis, 2016. "Energy Conversion: A Comparison of Fix- and Self-Referenced Wave Energy Converters," Energies, MDPI, vol. 9(12), pages 1-19, December.
    2. Michailides, Constantine & Gao, Zhen & Moan, Torgeir, 2016. "Experimental study of the functionality of a semisubmersible wind turbine combined with flap-type Wave Energy Converters," Renewable Energy, Elsevier, vol. 93(C), pages 675-690.
    3. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    4. Federico Attene & Francesco Balduzzi & Alessandro Bianchini & M. Sergio Campobasso, 2020. "Using Experimentally Validated Navier-Stokes CFD to Minimize Tidal Stream Turbine Power Losses Due to Wake/Turbine Interactions," Sustainability, MDPI, vol. 12(21), pages 1-26, October.
    5. Estefania Artigao & Antonio Vigueras-Rodríguez & Andrés Honrubia-Escribano & Sergio Martín-Martínez & Emilio Gómez-Lázaro, 2021. "Wind Resource and Wind Power Generation Assessment for Education in Engineering," Sustainability, MDPI, vol. 13(5), pages 1-27, February.
    6. Faraggiana, E. & Whitlam, C. & Chapman, J. & Hillis, A. & Roesner, J. & Hann, M. & Greaves, D. & Yu, Y.-H. & Ruehl, K. & Masters, I. & Foster, G. & Stockman, G., 2020. "Computational modelling and experimental tank testing of the multi float WaveSub under regular wave forcing," Renewable Energy, Elsevier, vol. 152(C), pages 892-909.
    7. Hu, Jianjian & Zhou, Binzhen & Vogel, Christopher & Liu, Pin & Willden, Richard & Sun, Ke & Zang, Jun & Geng, Jing & Jin, Peng & Cui, Lin & Jiang, Bo & Collu, Maurizio, 2020. "Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters," Applied Energy, Elsevier, vol. 269(C).
    8. Andrew Shires & Velissarios Kourkoulis, 2013. "Application of Circulation Controlled Blades for Vertical Axis Wind Turbines," Energies, MDPI, vol. 6(8), pages 1-20, July.
    9. Reduan Atan & Jamie Goggins & Stephen Nash, 2016. "A Detailed Assessment of the Wave Energy Resource at the Atlantic Marine Energy Test Site," Energies, MDPI, vol. 9(11), pages 1-29, November.
    10. Lorenzo Cottura & Riccardo Caradonna & Alberto Ghigo & Riccardo Novo & Giovanni Bracco & Giuliana Mattiazzo, 2021. "Dynamic Modeling of an Offshore Floating Wind Turbine for Application in the Mediterranean Sea," Energies, MDPI, vol. 14(1), pages 1-34, January.
    11. Hyebin Lee & Sunny Kumar Poguluri & Yoon Hyeok Bae, 2018. "Performance Analysis of Multiple Wave Energy Converters Placed on a Floating Platform in the Frequency Domain," Energies, MDPI, vol. 11(2), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yuhan & Dong, Sheng, 2022. "Array of concentric perforated cylindrical systems with torus oscillating bodies integrated on inner cylinders," Applied Energy, Elsevier, vol. 327(C).
    2. Wang, Tianyuan & Zhu, Kai & Cao, Feifei & Li, Demin & Gong, Haoxiang & Li, Yanni & Shi, Hongda, 2024. "A coupling framework between OpenFAST and WEC-Sim. Part I: Validation and dynamic response analysis of IEA-15-MW-UMaine FOWT," Renewable Energy, Elsevier, vol. 225(C).
    3. Asmita Ajay Rathod & Balaji Subramanian, 2022. "Scrutiny of Hybrid Renewable Energy Systems for Control, Power Management, Optimization and Sizing: Challenges and Future Possibilities," Sustainability, MDPI, vol. 14(24), pages 1-35, December.
    4. Yi Zhang & Dapeng Zhang & Haoyu Jiang, 2023. "A Review of Offshore Wind and Wave Installations in Some Areas with an Eye towards Generating Economic Benefits and Offering Commercial Inspiration," Sustainability, MDPI, vol. 15(10), pages 1-32, May.
    5. Alberto Ghigo & Emilio Faraggiana & Massimo Sirigu & Giuliana Mattiazzo & Giovanni Bracco, 2022. "Design and Analysis of a Floating Photovoltaic System for Offshore Installation: The Case Study of Lampedusa," Energies, MDPI, vol. 15(23), pages 1-30, November.
    6. Vijayaraja Loganathan & Dhanasekar Ravikumar & Rupa Kesavan & Kanakasri Venkatesan & Raadha Saminathan & Raju Kannadasan & Mahalingam Sudhakaran & Mohammed H. Alsharif & Zong Woo Geem & Junhee Hong, 2022. "A Case Study on Renewable Energy Sources, Power Demand, and Policies in the States of South India—Development of a Thermoelectric Model," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
    7. Dario Maradin & Bojana Olgić Draženović & Saša Čegar, 2023. "The Efficiency of Offshore Wind Energy Companies in the European Countries: A DEA Approach," Energies, MDPI, vol. 16(9), pages 1-16, April.
    8. Anindya Ray & Kaushik Rajashekara, 2023. "Electrification of Offshore Oil and Gas Production: Architectures and Power Conversion," Energies, MDPI, vol. 16(15), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    2. Gaspar, J.F. & Kamarlouei, M. & Thiebaut, F. & Guedes Soares, C., 2021. "Compensation of a hybrid platform dynamics using wave energy converters in different sea state conditions," Renewable Energy, Elsevier, vol. 177(C), pages 871-883.
    3. Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
    4. Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.
    5. Kamarlouei, M. & Gaspar, J.F. & Calvario, M. & Hallak, T.S. & Mendes, M.J.G.C. & Thiebaut, F. & Guedes Soares, C., 2022. "Experimental study of wave energy converter arrays adapted to a semi-submersible wind platform," Renewable Energy, Elsevier, vol. 188(C), pages 145-163.
    6. Payam Aboutalebi & Fares M’zoughi & Izaskun Garrido & Aitor J. Garrido, 2021. "Performance Analysis on the Use of Oscillating Water Column in Barge-Based Floating Offshore Wind Turbines," Mathematics, MDPI, vol. 9(5), pages 1-22, February.
    7. David M. Skene & Nataliia Sergiienko & Boyin Ding & Benjamin Cazzolato, 2021. "The Prospect of Combining a Point Absorber Wave Energy Converter with a Floating Offshore Wind Turbine," Energies, MDPI, vol. 14(21), pages 1-24, November.
    8. Zhu, Kai & Shi, Hongda & Zheng, Siming & Michele, Simone & Cao, Feifei, 2023. "Hydrodynamic analysis of hybrid system with wind turbine and wave energy converter," Applied Energy, Elsevier, vol. 350(C).
    9. Li, Yanni & Yan, Shiqiang & Shi, Hongda & Ma, Qingwei & Li, Demin & Cao, Feifei, 2023. "Hydrodynamic analysis of a novel multi-buoy wind-wave energy system," Renewable Energy, Elsevier, vol. 219(P1).
    10. Zhou, Binzhen & Hu, Jianjian & Jin, Peng & Sun, Ke & Li, Ye & Ning, Dezhi, 2023. "Power performance and motion response of a floating wind platform and multiple heaving wave energy converters hybrid system," Energy, Elsevier, vol. 265(C).
    11. Yang, Yang & Shi, Zhaobin & Fu, Jianbin & Ma, Lu & Yu, Jie & Fang, Fang & Li, Chun & Chen, Shunhua & Yang, Wenxian, 2023. "Effects of tidal turbine number on the performance of a 10 MW-class semi-submersible integrated floating wind-current system," Energy, Elsevier, vol. 285(C).
    12. Hu, Jianjian & Zhou, Binzhen & Vogel, Christopher & Liu, Pin & Willden, Richard & Sun, Ke & Zang, Jun & Geng, Jing & Jin, Peng & Cui, Lin & Jiang, Bo & Collu, Maurizio, 2020. "Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters," Applied Energy, Elsevier, vol. 269(C).
    13. Cao, Feifei & Yu, Mingqi & Han, Meng & Liu, Bing & Wei, Zhiwen & Jiang, Juan & Tian, Huiyuan & Shi, Hongda & Li, Yanni, 2023. "WECs microarray effect on the coupled dynamic response and power performance of a floating combined wind and wave energy system," Renewable Energy, Elsevier, vol. 219(P2).
    14. He, Guanghua & Luan, Zhengxiao & Zhang, Wei & He, Runhua & Liu, Chaogang & Yang, Kaibo & Yang, Changhao & Jing, Penglin & Zhang, Zhigang, 2023. "Review on research approaches for multi-point absorber wave energy converters," Renewable Energy, Elsevier, vol. 218(C).
    15. Xianxiong Zhang & Bin Li & Zhenwei Hu & Jiang Deng & Panpan Xiao & Mingsheng Chen, 2022. "Research on Size Optimization of Wave Energy Converters Based on a Floating Wind-Wave Combined Power Generation Platform," Energies, MDPI, vol. 15(22), pages 1-16, November.
    16. Hengxu Liu & Feng Yan & Fengmei Jing & Jingtao Ao & Zhaoliang Han & Fankai Kong, 2020. "Numerical and Experimental Investigation on a Moonpool-Buoy Wave Energy Converter," Energies, MDPI, vol. 13(9), pages 1-16, May.
    17. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    18. Eva Segura & Rafael Morales & José A. Somolinos, 2019. "Increasing the Competitiveness of Tidal Systems by Means of the Improvement of Installation and Maintenance Maneuvers in First Generation Tidal Energy Converters—An Economic Argumentation," Energies, MDPI, vol. 12(13), pages 1-27, June.
    19. Atan, Reduan & Goggins, Jamie & Nash, Stephen, 2018. "Galway Bay – The 1/4 scale wave energy test site? A detailed wave energy resource assessment and investigation of scaling factors," Renewable Energy, Elsevier, vol. 119(C), pages 217-234.
    20. Dalton, Gordon & Bardócz, Tamás & Blanch, Mike & Campbell, David & Johnson, Kate & Lawrence, Gareth & Lilas, Theodore & Friis-Madsen, Erik & Neumann, Frank & Nikitas, Nikitakos & Ortega, Saul Torres &, 2019. "Feasibility of investment in Blue Growth multiple-use of space and multi-use platform projects; results of a novel assessment approach and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 338-359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2739-:d:789813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.