IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5816-d885215.html
   My bibliography  Save this article

A Review of AC and DC Collection Grids for Offshore Renewable Energy with a Qualitative Evaluation for Marine Energy Resources

Author

Listed:
  • Christoffer Fjellstedt

    (Department of Electrical Engineering, Division of Electricity, Uppsala University, Box 65, 751 03 Uppsala, Sweden)

  • Md Imran Ullah

    (Department of Electrical Engineering, Division of Electricity, Uppsala University, Box 65, 751 03 Uppsala, Sweden)

  • Johan Forslund

    (Department of Electrical Engineering, Division of Electricity, Uppsala University, Box 65, 751 03 Uppsala, Sweden)

  • Erik Jonasson

    (Department of Electrical Engineering, Division of Electricity, Uppsala University, Box 65, 751 03 Uppsala, Sweden)

  • Irina Temiz

    (Department of Electrical Engineering, Division of Electricity, Uppsala University, Box 65, 751 03 Uppsala, Sweden)

  • Karin Thomas

    (Department of Electrical Engineering, Division of Electricity, Uppsala University, Box 65, 751 03 Uppsala, Sweden)

Abstract

Marine energy resources could be crucial in meeting the increased demand for clean electricity. To enable the use of marine energy resources, developing efficient and durable offshore electrical systems is vital. Currently, there are no large-scale commercial projects with marine energy resources, and the question of how to design such electrical systems is still not settled. A natural starting point in investigating this is to draw on experiences and research from offshore wind power. This article reviews different collection grid topologies and key components for AC and DC grid structures. The review covers aspects such as the type of components, operation and estimated costs of commercially available components. A DC collection grid can be especially suitable for offshore marine energy resources, since the transmission losses are expected to be lower, and the electrical components could possibly be made smaller. Therefore, five DC collection grid topologies are proposed and qualitatively evaluated for marine energy resources using submerged and non-submerged marine energy converters. The properties, advantages and disadvantages of the proposed topologies are discussed, and it is concluded that a suitable electrical system for a marine energy farm will most surely be based on a site-specific techno-economic analysis.

Suggested Citation

  • Christoffer Fjellstedt & Md Imran Ullah & Johan Forslund & Erik Jonasson & Irina Temiz & Karin Thomas, 2022. "A Review of AC and DC Collection Grids for Offshore Renewable Energy with a Qualitative Evaluation for Marine Energy Resources," Energies, MDPI, vol. 15(16), pages 1-26, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5816-:d:885215
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5816/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5816/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Alegría, Iñigo Martínez & Martín, Jose Luis & Kortabarria, Iñigo & Andreu, Jon & Ereño, Pedro Ibañez, 2009. "Transmission alternatives for offshore electrical power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1027-1038, June.
    2. Lee, M.Q. & Lu, C.N. & Huang, H.S., 2009. "Reliability and cost analyses of electricity collection systems of a marine current farm--A Taiwanese case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2012-2021, October.
    3. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    4. Madariaga, A. & Martín, J.L. & Zamora, I. & Martínez de Alegría, I. & Ceballos, S., 2013. "Technological trends in electric topologies for offshore wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 32-44.
    5. Adam J. Collin & Anup J. Nambiar & David Bould & Ben Whitby & M. A. Moonem & Benjamin Schenkman & Stanley Atcitty & Paulo Chainho & Aristides E. Kiprakis, 2017. "Electrical Components for Marine Renewable Energy Arrays: A Techno-Economic Review," Energies, MDPI, vol. 10(12), pages 1-31, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Tang & Guoxing Mu & Jie Pan & Zhiwei Xue & Hong Yang & Mingyang Mei & Zhihao Zhang & Peng Kou, 2023. "Dynamic Equivalent Model Considering Multiple Induction Motors for System Frequency Response," Energies, MDPI, vol. 16(7), pages 1-23, March.
    2. Ran Tao & Jingpeng Yue & Zhenlin Huang & Ranran An & Zou Li & Junfeng Liu, 2022. "A High-Gain DC Side Converter with a Ripple-Free Input Current for Offshore Wind Energy Systems," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    3. Anindya Ray & Kaushik Rajashekara, 2023. "Electrification of Offshore Oil and Gas Production: Architectures and Power Conversion," Energies, MDPI, vol. 16(15), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asad Rehman & Mohsin Ali Koondhar & Zafar Ali & Munawar Jamali & Ragab A. El-Sehiemy, 2023. "Critical Issues of Optimal Reactive Power Compensation Based on an HVAC Transmission System for an Offshore Wind Farm," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    2. Ruddy, Jonathan & Meere, Ronan & O’Donnell, Terence, 2016. "Low Frequency AC transmission for offshore wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 75-86.
    3. López, Iraide & Andreu, Jon & Ceballos, Salvador & Martínez de Alegría, Iñigo & Kortabarria, Iñigo, 2013. "Review of wave energy technologies and the necessary power-equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 413-434.
    4. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    5. David Firnando Silalahi & Andrew Blakers & Cheng Cheng, 2023. "100% Renewable Electricity in Indonesia," Energies, MDPI, vol. 17(1), pages 1-22, December.
    6. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Hou, Jiazuo & Hu, Chenxi & Lei, Shunbo & Hou, Yunhe, 2024. "Cyber resilience of power electronics-enabled power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M. & Jiang, Lide & French, Steven P. & Shi, Xuan & Smith, Brennan T. & Neary, Vincent S. & Stewart, Kevin M., 2012. "National geodatabase of tidal stream power resource in USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3326-3338.
    9. Jaesik Kang, 2022. "Comprehensive Analysis of Transient Overvoltage Phenomena for Metal-Oxide Varistor Surge Arrester in LCC-HVDC Transmission System with Special Protection Scheme," Energies, MDPI, vol. 15(19), pages 1-17, September.
    10. Ga-Eun Jung & Hae-Jin Sung & Minh-Chau Dinh & Minwon Park & Hyunkyoung Shin, 2021. "A Comparative Analysis of Economics of PMSG and SCSG Floating Offshore Wind Farms," Energies, MDPI, vol. 14(5), pages 1-18, March.
    11. Arcia-Garibaldi, Guadalupe & Cruz-Romero, Pedro & Gómez-Expósito, Antonio, 2018. "Future power transmission: Visions, technologies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 285-301.
    12. Sahebkar Farkhani, Jalal & Çelik, Özgür & Ma, Kaiqi & Bak, Claus Leth & Chen, Zhe, 2024. "A comprehensive review of potential protection methods for VSC multi-terminal HVDC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    13. Yingying Jiang & Xiaolin Chen & Sui Peng & Xiao Du & Dan Xu & Junjie Tang & Wenyuan Li, 2019. "Study on Emergency Load Shedding of Hybrid AC/DC Receiving-End Power Grid with Stochastic, Static Characteristics-Dependent Load Model," Energies, MDPI, vol. 12(20), pages 1-20, October.
    14. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "GIS based multi-criteria assessment of tidal stream power potential: A case study for Georgia, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2310-2321, June.
    15. Bo, Yimin & Bao, Minglei & Ding, Yi & Hu, Yishuang, 2024. "A DNN-based reliability evaluation method for multi-state series-parallel systems considering semi-Markov process," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    16. Wang He & Min Liu & Chaowen Zuo & Kai Wang, 2023. "Massive Multi-Source Joint Outbound and Benefit Distribution Model Based on Cooperative Game," Energies, MDPI, vol. 16(18), pages 1-19, September.
    17. Gomes Relva, Stefania & Oliveira da Silva, Vinícius & Peyerl, Drielli & Veiga Gimenes, André Luiz & Molares Udaeta, Miguel Edgar, 2020. "Regulating the electro-energetic use of natural gas by gas-to-wire offshore technology: Case study from Brazil," Utilities Policy, Elsevier, vol. 66(C).
    18. Nansheng Pang & Wenjing Guo, 2019. "Uncertain Hybrid Multiple Attribute Group Decision of Offshore Wind Power Transmission Mode Based on theVIKOR Method," Sustainability, MDPI, vol. 11(21), pages 1-21, November.
    19. Meng, Yongqing & Yan, Shuhao & Wu, Kang & Ning, Lianhui & Li, Xuan & Wang, Xiuli & Wang, Xifan, 2021. "Comparative economic analysis of low frequency AC transmission system for the integration of large offshore wind farms," Renewable Energy, Elsevier, vol. 179(C), pages 1955-1968.
    20. Rouzbehi, Kumars & Candela, J. Ignacio & Gharehpetian, Gevork B. & Harnefors, Lennart & Luna, Alvaro & Rodriguez, Pedro, 2017. "Multiterminal DC grids: Operating analogies to AC power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 886-895.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5816-:d:885215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.