IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v274y2023ics0360544223007430.html
   My bibliography  Save this article

Decarbonization of energy supply to offshore oil & gas production with post-combustion capture: A simulation-based techno-economic analysis

Author

Listed:
  • Cruz, Matheus de Andrade
  • Brigagão, George Victor
  • de Medeiros, José Luiz
  • Musse, Ana Paula Santana
  • Kami, Eduardo
  • Freire, Ronaldo Lucas Alkmin
  • Araújo, Ofélia de Queiroz Fernandes

Abstract

Low-carbon-emissions FPSO (Floating, Production, Storage, and Offloading) designs are developed and compared, using process simulation in HYSYS, and an original economic analysis approach. FPSO units with power-intensive operations (e.g., fields with high gas-to-oil ratio) are the focus of the study. Three designs are evaluated: Case A considers a floating natural-gas-combined-cycle power unit with post-combustion CCS (Carbon Capture and Storage) connected to an existing FPSO. Case B.1 retrofits a CCS unit downstream of a conventional FPSO with simple-cycle power generation. B.2 adds a more efficient combined cycle to B.1. The removed CO2 is injected for enhanced oil recovery. Marginal abatement cost is investigated for oil prices of 60/80/100 USD/bbloil and recovery of 0.0/1.5/3.0 bbloil/tCO2 injected. The added weights to topsides are 4,326t (A), 2,762t (B.1) and 3,445t (B.2). CO2 intensity (kgCO2/boe) is reduced from 6.92 in the conventional design to 0.74 (A-B.2) and 0.92 (B.1). The marginal abatement cost of B.1 and B.2 are alike, approaching zero at 1.5 bbloil/tCO2 oil recovery. Taking technical retrofitting challenges aside, Case B.1 is the most cost-effective alternative. Cases A and B.2 have a slightly better environmental performance than B.1, but B.2 presents a superior economic performance and lower operational risks compared to A.

Suggested Citation

  • Cruz, Matheus de Andrade & Brigagão, George Victor & de Medeiros, José Luiz & Musse, Ana Paula Santana & Kami, Eduardo & Freire, Ronaldo Lucas Alkmin & Araújo, Ofélia de Queiroz Fernandes, 2023. "Decarbonization of energy supply to offshore oil & gas production with post-combustion capture: A simulation-based techno-economic analysis," Energy, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:energy:v:274:y:2023:i:c:s0360544223007430
    DOI: 10.1016/j.energy.2023.127349
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223007430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127349?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rivera-Alvarez, Alejandro & Coleman, Michael J. & Ordonez, Juan C., 2015. "Ship weight reduction and efficiency enhancement through combined power cycles," Energy, Elsevier, vol. 93(P1), pages 521-533.
    2. Hetland, Jens & Kvamsdal, Hanne Marie & Haugen, Geir & Major, Fredrik & Kårstad, Vemund & Tjellander, Göran, 2009. "Integrating a full carbon capture scheme onto a 450Â MWe NGCC electric power generation hub for offshore operations: Presenting the Sevan GTW concept," Applied Energy, Elsevier, vol. 86(11), pages 2298-2307, November.
    3. Khalilpour, Rajab & Karimi, I.A., 2012. "Evaluation of utilization alternatives for stranded natural gas," Energy, Elsevier, vol. 40(1), pages 317-328.
    4. Lindstad, Haakon & Asbjørnslett, Bjørn E. & Strømman, Anders H., 2012. "The importance of economies of scale for reductions in greenhouse gas emissions from shipping," Energy Policy, Elsevier, vol. 46(C), pages 386-398.
    5. Zhang, Kai & Lau, Hon Chung & Liu, Shuyang & Li, Hangyu, 2022. "Carbon capture and storage in the coastal region of China between Shanghai and Hainan," Energy, Elsevier, vol. 247(C).
    6. Zhang, Hongyu & Tomasgard, Asgeir & Knudsen, Brage Rugstad & Svendsen, Harald G. & Bakker, Steffen J. & Grossmann, Ignacio E., 2022. "Modelling and analysis of offshore energy hubs," Energy, Elsevier, vol. 261(PA).
    7. Vidoza, Jorge A. & Andreasen, Jesper Graa & Haglind, Fredrik & dos Reis, Max M.L. & Gallo, Waldyr, 2019. "Design and optimization of power hubs for Brazilian off-shore oil production units," Energy, Elsevier, vol. 176(C), pages 656-666.
    8. Roussanaly, S. & Aasen, A. & Anantharaman, R. & Danielsen, B. & Jakobsen, J. & Heme-De-Lacotte, L. & Neji, G. & Sødal, A. & Wahl, P.E. & Vrana, T.K. & Dreux, R., 2019. "Offshore power generation with carbon capture and storage to decarbonise mainland electricity and offshore oil and gas installations: A techno-economic analysis," Applied Energy, Elsevier, vol. 233, pages 478-494.
    9. Flórez-Orrego, Daniel & Albuquerque, Cyro & da Silva, Julio A.M. & Freire, Ronaldo Lucas Alkmin & de Oliveira Junior, Silvio, 2021. "Optimal design of power hubs for offshore petroleum platforms," Energy, Elsevier, vol. 235(C).
    10. Nguyen, Tuong-Van & Voldsund, Mari & Breuhaus, Peter & Elmegaard, Brian, 2016. "Energy efficiency measures for offshore oil and gas platforms," Energy, Elsevier, vol. 117(P2), pages 325-340.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Xuanmei & Chen, Kanxiang & Su, Yuxin, 2023. "Green innovation in oil and gas exploration and production for meeting the sustainability goals," Resources Policy, Elsevier, vol. 87(PA).
    2. Shi, Xuhang & Li, Chunzhe & Yang, Zhenning & Xu, Jie & Song, Jintao & Wang, Fuqiang & Shuai, Yong & Zhang, Wenjing, 2024. "Egg-tray-inspired concave foam structure on pore-scale space radiation regulation for enhancing photo-thermal-chemical synergistic conversion," Energy, Elsevier, vol. 297(C).
    3. Mengting Wu & Wei Liu & Zhifei Ma & Tian Qin & Zhiqin Chen & Yalan Zhang & Ning Cao & Xianchuan Xie & Sunlin Chi & Jinying Xu & Yi Qi, 2024. "Global Trends in the Research and Development of Petrochemical Waste Gas from 1981 to 2022," Sustainability, MDPI, vol. 16(14), pages 1-25, July.
    4. Tian, Ai-Qing & Wang, Xiao-Yang & Xu, Heying & Pan, Jeng-Shyang & Snášel, Václav & Lv, Hong-Xia, 2024. "Multi-objective optimization model for railway heavy-haul traffic: Addressing carbon emissions reduction and transport efficiency improvement," Energy, Elsevier, vol. 294(C).
    5. Wei, Jianguang & Zhou, Xiaofeng & Shamil, Sultanov & Yuriy, Kotenev & Yang, Erlong & Yang, Ying & Wang, Anlun, 2024. "High-pressure mercury intrusion analysis of pore structure in typical lithofacies shale," Energy, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. da Silva, Vinícius Oliveira & Relva, Stefania Gomes & Mondragon, Marcella & Mendes, André Bergsten & Nishimoto, Kazuo & Peyerl, Drielli, 2023. "Building Options for the Brazilian Pre-salt: A technical-economic and infrastructure analysis of offshore integration between energy generation and natural gas exploration," Resources Policy, Elsevier, vol. 81(C).
    2. Flórez-Orrego, Daniel & Albuquerque, Cyro & da Silva, Julio A.M. & Freire, Ronaldo Lucas Alkmin & de Oliveira Junior, Silvio, 2021. "Optimal design of power hubs for offshore petroleum platforms," Energy, Elsevier, vol. 235(C).
    3. Liaw, Kim Leong & Kurnia, Jundika C. & Lai, Wen Kang & Ong, Khai Chuin & Zar, Muhammad Aliff B. Mohd Ali & Muhammad, M. Fadhli B. & Firmansyah,, 2023. "Optimization of a novel impulse gas turbine nozzle and blades design utilizing Taguchi method for micro-scale power generation," Energy, Elsevier, vol. 282(C).
    4. Vidoza, Jorge A. & Andreasen, Jesper Graa & Haglind, Fredrik & dos Reis, Max M.L. & Gallo, Waldyr, 2019. "Design and optimization of power hubs for Brazilian off-shore oil production units," Energy, Elsevier, vol. 176(C), pages 656-666.
    5. Khan, Mohd Shariq & Lee, Moonyong, 2013. "Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints," Energy, Elsevier, vol. 49(C), pages 146-155.
    6. Lindstad, Haakon & Bright, Ryan M. & Strømman, Anders H., 2016. "Economic savings linked to future Arctic shipping trade are at odds with climate change mitigation," Transport Policy, Elsevier, vol. 45(C), pages 24-30.
    7. Davor Dujak, 2017. "Mapping Of Natural Gas Supply Chains: Literature Review," Business Logistics in Modern Management, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, vol. 17, pages 293-309.
    8. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Khalilpour, Rajab, 2014. "Multi-level investment planning and scheduling under electricity and carbon market dynamics: Retrofit of a power plant with PCC (post-combustion carbon capture) processes," Energy, Elsevier, vol. 64(C), pages 172-186.
    10. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J., 2014. "Effect of different mix compositions on apparent carbon dioxide (CO2) permeability of geopolymer: Suitability as well cement for CO2 sequestration wells," Applied Energy, Elsevier, vol. 114(C), pages 939-948.
    11. Palomba, Valeria & Aprile, Marcello & Motta, Mario & Vasta, Salvatore, 2017. "Study of sorption systems for application on low-emission fishing vessels," Energy, Elsevier, vol. 134(C), pages 554-565.
    12. Anindya Ray & Kaushik Rajashekara, 2023. "Electrification of Offshore Oil and Gas Production: Architectures and Power Conversion," Energies, MDPI, vol. 16(15), pages 1-19, August.
    13. Ali, Usman & Font-Palma, Carolina & Nikpey Somehsaraei, Homam & Mansouri Majoumerd, Mohammad & Akram, Muhammad & Finney, Karen N. & Best, Thom & Mohd Said, Nassya B. & Assadi, Mohsen & Pourkashanian, , 2017. "Benchmarking of a micro gas turbine model integrated with post-combustion CO2 capture," Energy, Elsevier, vol. 126(C), pages 475-487.
    14. Gomes Relva, Stefania & Oliveira da Silva, Vinícius & Peyerl, Drielli & Veiga Gimenes, André Luiz & Molares Udaeta, Miguel Edgar, 2020. "Regulating the electro-energetic use of natural gas by gas-to-wire offshore technology: Case study from Brazil," Utilities Policy, Elsevier, vol. 66(C).
    15. Anan Zhang & Hong Zhang & Meysam Qadrdan & Wei Yang & Xiaolong Jin & Jianzhong Wu, 2019. "Optimal Planning of Integrated Energy Systems for Offshore Oil Extraction and Processing Platforms," Energies, MDPI, vol. 12(4), pages 1-28, February.
    16. Deng, Han & Skaugen, Geir & Næss, Erling & Zhang, Mingjie & Øiseth, Ole A., 2021. "A novel methodology for design optimization of heat recovery steam generators with flow-induced vibration analysis," Energy, Elsevier, vol. 226(C).
    17. Lee, Tsung-Chen & Chang, Young-Tae & Lee, Paul T.W., 2013. "Economy-wide impact analysis of a carbon tax on international container shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 58(C), pages 87-102.
    18. Giorgetti, S. & Bricteux, L. & Parente, A. & Blondeau, J. & Contino, F. & De Paepe, W., 2017. "Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations," Applied Energy, Elsevier, vol. 207(C), pages 243-253.
    19. Kim, Juwon & Seo, Youngkyun & Chang, Daejun, 2016. "Economic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefaction," Applied Energy, Elsevier, vol. 182(C), pages 154-163.
    20. Yu, Cheng-Hsiu & Chen, Ming-Tsz & Chen, Hao & Tan, Chung-Sung, 2016. "Effects of process configurations for combination of rotating packed bed and packed bed on CO2 capture," Applied Energy, Elsevier, vol. 175(C), pages 269-276.

    More about this item

    Keywords

    FPSO; CO2-Rich natural gas; CO2-EOR; NGCC; CCS; Carbon intensity;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:274:y:2023:i:c:s0360544223007430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.