IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5382-d1194432.html
   My bibliography  Save this article

Adsorption Air-Conditioning for Automotive Applications: A Critical Review

Author

Listed:
  • Salvatore Vasta

    (Italian National Research Council, Institute for Advanced Energy Technologies “Nicola Giordano” (CNR-ITAE), 98126 Messina, Italy)

Abstract

The automotive industry seeks innovative solutions for energy-efficient and sustainable vehicles. Conventional air-conditioning systems consume significant energy and have environmental impacts. Adsorption technology offers a promising alternative with higher energy efficiency and reduced emissions. This review analyzes recent advancements in adsorption air-conditioning for automotive applications, including material selection and system integration. It discusses the benefits, challenges, environmental impact, and waste heat recovery potential of adsorption systems. This review explores emerging trends like hybridization with vapour-compression (VC) systems to optimize energy efficiency and sustainability. By evaluating the existing literature, this review provides insights into thermally driven technologies for automotive air-conditioning.

Suggested Citation

  • Salvatore Vasta, 2023. "Adsorption Air-Conditioning for Automotive Applications: A Critical Review," Energies, MDPI, vol. 16(14), pages 1-35, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5382-:d:1194432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5382/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5382/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sapienza, Alessio & Palomba, Valeria & Gullì, Giuseppe & Frazzica, Andrea & Vasta, Salvatore, 2017. "A new management strategy based on the reallocation of ads-/desorption times: Experimental operation of a full-scale 3 beds adsorption chiller," Applied Energy, Elsevier, vol. 205(C), pages 1081-1090.
    2. Sapienza, Alessio & Santamaria, Salvatore & Frazzica, Andrea & Freni, Angelo, 2011. "Influence of the management strategy and operating conditions on the performance of an adsorption chiller," Energy, Elsevier, vol. 36(9), pages 5532-5538.
    3. Ju Yeong Kwon & Jung Kyung Kim & Hyunjin Lee & Dongchan Lee & Da Young Ju, 2023. "A Comprehensive Overview of Basic Research on Human Thermal Management in Future Mobility: Considerations, Challenges, and Methods," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    4. Olkis, Christopher & AL-Hasni, Shihab & Brandani, Stefano & Vasta, Salvatore & Santori, Giulio, 2021. "Solar powered adsorption desalination for Northern and Southern Europe," Energy, Elsevier, vol. 232(C).
    5. Verde, M. & Harby, K. & de Boer, Robert & Corberán, José M., 2016. "Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part II - Performance optimization under different real driving conditions," Energy, Elsevier, vol. 115(P1), pages 996-1009.
    6. Qinghong Peng & Qungui Du, 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review," Energies, MDPI, vol. 9(4), pages 1-17, March.
    7. Tommaso Toppi & Tommaso Villa & Salvatore Vasta & Walter Mittelbach & Angelo Freni, 2022. "Testing of a Falling-Film Evaporator for Adsorption Chillers," Energies, MDPI, vol. 15(5), pages 1-14, February.
    8. Tryfon C. Roumpedakis & Salvatore Vasta & Alessio Sapienza & George Kallis & Sotirios Karellas & Ursula Wittstadt & Mirko Tanne & Niels Harborth & Uwe Sonnenfeld, 2020. "Performance Results of a Solar Adsorption Cooling and Heating Unit," Energies, MDPI, vol. 13(7), pages 1-18, April.
    9. Golparvar, Behzad & Niazmand, Hamid & Sharafian, Amir & Ahmadian Hosseini, Amirjavad, 2018. "Optimum fin spacing of finned tube adsorber bed heat exchangers in an exhaust gas-driven adsorption cooling system," Applied Energy, Elsevier, vol. 232(C), pages 504-516.
    10. Frazzica, A. & Palomba, V. & Dawoud, B. & Gullì, G. & Brancato, V. & Sapienza, A. & Vasta, S. & Freni, A. & Costa, F. & Restuccia, G., 2016. "Design, realization and testing of an adsorption refrigerator based on activated carbon/ethanol working pair," Applied Energy, Elsevier, vol. 174(C), pages 15-24.
    11. Wang, D.C. & Li, Y.H. & Li, D. & Xia, Y.Z. & Zhang, J.P., 2010. "A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 344-353, January.
    12. Hani Al-Rawashdeh & Ahmad O. Hasan & Hazem A. Al-Shakhanbeh & Mujahed Al-Dhaifallah & Mohamed R. Gomaa & Hegazy Rezk, 2021. "Investigation of the Effect of Solar Ventilation on the Cabin Temperature of Vehicles Parked under the Sun," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    13. Sharafian, Amir & Nemati Mehr, Seyyed Mahdi & Thimmaiah, Poovanna Cheppudira & Huttema, Wendell & Bahrami, Majid, 2016. "Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications," Energy, Elsevier, vol. 112(C), pages 481-493.
    14. Wang, L.W. & Jiang, L. & Gao, J. & Gao, P. & Wang, R.Z., 2017. "Analysis of resorption working pairs for air conditioners of electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 594-603.
    15. Zhong, Yongfang & Fang, Tiegang & Wert, Kevin L., 2011. "An adsorption air conditioning system to integrate with the recent development of emission control for heavy-duty vehicles," Energy, Elsevier, vol. 36(7), pages 4125-4135.
    16. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    17. Palomba, Valeria & Wittstadt, Ursula & Bonanno, Antonino & Tanne, Mirko & Harborth, Niels & Vasta, Salvatore, 2019. "Components and design guidelines for solar cooling systems: The experience of ZEOSOL," Renewable Energy, Elsevier, vol. 141(C), pages 678-692.
    18. Zhilong He & Lantian Ji & Ziwen Xing, 2020. "Experimental Investigation on the DLC Film Coating Technology in Scroll Compressors of Automobile Air Conditioning," Energies, MDPI, vol. 13(19), pages 1-16, October.
    19. Huang, K. David & Tzeng, Sheng-Chung & Ma, Wei-Ping & Wu, Ming-Fung, 2005. "Intelligent solar-powered automobile-ventilation system," Applied Energy, Elsevier, vol. 80(2), pages 141-154, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadzadeh Kowsari, Milad & Niazmand, Hamid & Tokarev, Mikhail Mikhailovich, 2018. "Bed configuration effects on the finned flat-tube adsorption heat exchanger performance: Numerical modeling and experimental validation," Applied Energy, Elsevier, vol. 213(C), pages 540-554.
    2. Ashouri, Mahyar & Chhokar, Callum & Bahrami, Majid, 2024. "A novel microgroove-based absorber for sorption heat transformation systems: Analytical modeling and experimental investigation," Energy, Elsevier, vol. 307(C).
    3. Steven Metcalf & Ángeles Rivero-Pacho & Robert Critoph, 2021. "Design and Large Temperature Jump Testing of a Modular Finned-Tube Carbon–Ammonia Adsorption Generator for Gas-Fired Heat Pumps," Energies, MDPI, vol. 14(11), pages 1-17, June.
    4. Allouhi, A. & Kousksou, T. & Jamil, A. & El Rhafiki, T. & Mourad, Y. & Zeraouli, Y., 2015. "Optimal working pairs for solar adsorption cooling applications," Energy, Elsevier, vol. 79(C), pages 235-247.
    5. Kyle R. Gluesenkamp & Andrea Frazzica & Andreas Velte & Steven Metcalf & Zhiyao Yang & Mina Rouhani & Corey Blackman & Ming Qu & Eric Laurenz & Angeles Rivero-Pacho & Sam Hinmers & Robert Critoph & Ma, 2020. "Experimentally Measured Thermal Masses of Adsorption Heat Exchangers," Energies, MDPI, vol. 13(5), pages 1-21, March.
    6. Chao, Jingwei & Xu, Jiaxing & Xiang, Shizhao & Bai, Zhaoyuan & Yan, Taisen & Wang, Pengfei & Wang, Ruzhu & Li, Tingxian, 2023. "High energy-density and power-density cold storage enabled by sorption thermal battery based on liquid-gas phase change process," Applied Energy, Elsevier, vol. 334(C).
    7. Verde, M. & Harby, K. & de Boer, Robert & Corberán, José M., 2016. "Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part I – Modeling and experimental validation," Energy, Elsevier, vol. 116(P1), pages 526-538.
    8. Golparvar, Behzad & Niazmand, Hamid & Sharafian, Amir & Ahmadian Hosseini, Amirjavad, 2018. "Optimum fin spacing of finned tube adsorber bed heat exchangers in an exhaust gas-driven adsorption cooling system," Applied Energy, Elsevier, vol. 232(C), pages 504-516.
    9. Yang, Zhiyao & Qu, Ming & Gluesenkamp, Kyle R., 2020. "Design screening and analysis of gas-fired ammonia-based chemisorption heat pumps for space heating in cold climate," Energy, Elsevier, vol. 207(C).
    10. Olkis, Christopher & AL-Hasni, Shihab & Brandani, Stefano & Vasta, Salvatore & Santori, Giulio, 2021. "Solar powered adsorption desalination for Northern and Southern Europe," Energy, Elsevier, vol. 232(C).
    11. Hamdy, Mohamed & Askalany, Ahmed A. & Harby, K. & Kora, Nader, 2015. "An overview on adsorption cooling systems powered by waste heat from internal combustion engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1223-1234.
    12. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    14. Tomasz Bujok & Piotr Boruta & Łukasz Mika & Karol Sztekler, 2021. "Analysis of Designs of Heat Exchangers Used in Adsorption Chillers," Energies, MDPI, vol. 14(23), pages 1-28, December.
    15. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Sharafian, Amir & Bahrami, Majid, 2014. "Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 440-451.
    17. Maciej Chorowski & Piotr Pyrka & Zbigniew Rogala & Piotr Czupryński, 2019. "Experimental Study of Performance Improvement of 3-Bed and 2-Evaporator Adsorption Chiller by Control Optimization," Energies, MDPI, vol. 12(20), pages 1-17, October.
    18. Habib, Khairul & Choudhury, Biplab & Chatterjee, Pradip Kumar & Saha, Bidyut Baran, 2013. "Study on a solar heat driven dual-mode adsorption chiller," Energy, Elsevier, vol. 63(C), pages 133-141.
    19. Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    20. Zhao, Chong & Wang, Yunfeng & Li, Ming & Zhao, Wenkui & Li, Xuejuan & Yu, Qiongfen & Huang, Mengxiao, 2020. "Impact of three different enhancing mass transfer operating characteristics on a solar adsorption refrigeration system with compound parabolic concentrator," Renewable Energy, Elsevier, vol. 152(C), pages 1354-1366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5382-:d:1194432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.