Testing of a Falling-Film Evaporator for Adsorption Chillers
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Woo Su Lee & Moon Yong Park & Xuan Quang Duong & Ngoc Vi Cao & Jae Dong Chung, 2020. "Effects of Evaporator and Condenser in the Analysis of Adsorption Chillers," Energies, MDPI, vol. 13(8), pages 1-14, April.
- Thimmaiah, Poovanna Cheppudira & Sharafian, Amir & Rouhani, Mina & Huttema, Wendell & Bahrami, Majid, 2017. "Evaluation of low-pressure flooded evaporator performance for adsorption chillers," Energy, Elsevier, vol. 122(C), pages 144-158.
- Cheppudira Thimmaiah, Poovanna & Sharafian, Amir & Huttema, Wendell & McCague, Claire & Bahrami, Majid, 2016. "Effects of capillary-assisted tubes with different fin geometries on the performance of a low-operating pressure evaporator for adsorption cooling system applications," Applied Energy, Elsevier, vol. 171(C), pages 256-265.
- Volmer, Rahel & Eckert, Julia & Füldner, Gerrit & Schnabel, Lena, 2017. "Evaporator development for adsorption heat transformation devices – Influencing factors on non-stationary evaporation with tube-fin heat exchangers at sub-atmospheric pressure," Renewable Energy, Elsevier, vol. 110(C), pages 141-153.
- Li-Hua Yu & Shu-Xue Xu & Guo-Yuan Ma & Jun Wang, 2015. "Experimental Research on Water Boiling Heat Transfer on Horizontal Copper Rod Surface at Sub-Atmospheric Pressure," Energies, MDPI, vol. 8(9), pages 1-12, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Salvatore Vasta, 2023. "Adsorption Air-Conditioning for Automotive Applications: A Critical Review," Energies, MDPI, vol. 16(14), pages 1-35, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jaroslaw Krzywanski, 2019. "A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods," Energies, MDPI, vol. 12(23), pages 1-32, November.
- Abadi, G. Bamorovat & Bahrami, Majid, 2020. "Combined evaporator and condenser for sorption cooling systems: A steady-state performance analysis," Energy, Elsevier, vol. 209(C).
- He, Fang & Nagano, Katsunori & Seol, Sung-Hoon & Togawa, Junya, 2022. "Thermal performance improvement of AHP using corrugated heat exchanger by dip-coating method with mass recovery," Energy, Elsevier, vol. 239(PE).
- He, Fang & Nagano, Katsunori & Togawa, Junya, 2020. "Experimental study and development of a low-cost 1 kW adsorption chiller using composite adsorbent based on natural mesoporous material," Energy, Elsevier, vol. 209(C).
- Chao, Jingwei & Xu, Jiaxing & Yan, Taisen & Xiang, Shizhao & Bai, Zhaoyuan & Wang, Ruzhu & Li, Tingxian, 2023. "Performance analysis of sorption thermal battery for high-density cold energy storage enabled by novel tube-free evaporator," Energy, Elsevier, vol. 273(C).
- Andreas Velte & Jörg Weise & Eric Laurenz & Joachim Baumeister & Gerrit Füldner, 2021. "Zeolite NaY-Copper Composites Produced by Sintering Processes for Adsorption Heat Transformation—Technology, Structure and Performance," Energies, MDPI, vol. 14(7), pages 1-24, April.
- Thimmaiah, Poovanna Cheppudira & Sharafian, Amir & Rouhani, Mina & Huttema, Wendell & Bahrami, Majid, 2017. "Evaluation of low-pressure flooded evaporator performance for adsorption chillers," Energy, Elsevier, vol. 122(C), pages 144-158.
- Björn Nienborg & Tobias Helling & Dominik Fröhlich & Rafael Horn & Gunther Munz & Peter Schossig, 2018. "Closed Adsorption Heat Storage—A Life Cycle Assessment on Material and Component Levels," Energies, MDPI, vol. 11(12), pages 1-16, December.
- Karol Sztekler & Tomasz Siwek & Wojciech Kalawa & Lukasz Lis & Lukasz Mika & Ewelina Radomska & Wojciech Nowak, 2021. "CFD Analysis of Elements of an Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(22), pages 1-19, November.
- Chao, Jingwei & Xu, Jiaxing & Xiang, Shizhao & Bai, Zhaoyuan & Yan, Taisen & Wang, Pengfei & Wang, Ruzhu & Li, Tingxian, 2023. "High energy-density and power-density cold storage enabled by sorption thermal battery based on liquid-gas phase change process," Applied Energy, Elsevier, vol. 334(C).
- Tokarev, Mikhail M. & Gordeeva, Larisa G. & Grekova, Alexandra D. & Aristov, Yuri I., 2018. "Adsorption cycle “heat from cold” for upgrading the ambient heat: The testing a lab-scale prototype with the composite sorbent CaClBr/silica," Applied Energy, Elsevier, vol. 211(C), pages 136-145.
- Lin Du & Yubo Wang & Wujing Wang & Xiangxiang Chen, 2018. "Studies on a Thermal Fault Simulation Device and the Pyrolysis Process of Insulating Oil," Energies, MDPI, vol. 11(12), pages 1-16, December.
- Golparvar, Behzad & Niazmand, Hamid & Sharafian, Amir & Ahmadian Hosseini, Amirjavad, 2018. "Optimum fin spacing of finned tube adsorber bed heat exchangers in an exhaust gas-driven adsorption cooling system," Applied Energy, Elsevier, vol. 232(C), pages 504-516.
- Gharzi, Mostafa & Kermani, Ali M. & Tash Shamsabadi, Hosseinali, 2023. "Experimental investigation of a parabolic trough collector-thermoelectric generator (PTC-TEG) hybrid solar system with a pressurized heat transfer fluid," Renewable Energy, Elsevier, vol. 202(C), pages 270-279.
- Sapienza, Alessio & Palomba, Valeria & Gullì, Giuseppe & Frazzica, Andrea & Vasta, Salvatore, 2017. "A new management strategy based on the reallocation of ads-/desorption times: Experimental operation of a full-scale 3 beds adsorption chiller," Applied Energy, Elsevier, vol. 205(C), pages 1081-1090.
- Sharafian, Amir & Nemati Mehr, Seyyed Mahdi & Thimmaiah, Poovanna Cheppudira & Huttema, Wendell & Bahrami, Majid, 2016. "Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications," Energy, Elsevier, vol. 112(C), pages 481-493.
- Chauhan, P.R. & Kaushik, S.C. & Tyagi, S.K., 2022. "Current status and technological advancements in adsorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
More about this item
Keywords
adsorption chillers; silica gel; water evaporation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1709-:d:758110. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.