IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v112y2016icp481-493.html
   My bibliography  Save this article

Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications

Author

Listed:
  • Sharafian, Amir
  • Nemati Mehr, Seyyed Mahdi
  • Thimmaiah, Poovanna Cheppudira
  • Huttema, Wendell
  • Bahrami, Majid

Abstract

Waste heat-driven adsorption cooling systems (ACS) are potential replacements for vapor compression refrigeration cycles in vehicle air conditioning applications. However, the bulkiness and heavy weight of ACS are major challenges facing commercialization of these environmentally friendly systems. This study examines the effects of adsorbent mass and the number of adsorber beds on the performance of a FAM-Z02/water ACS under different operating conditions. The experimental results show that reducing the mass of FAM-Z02 from 1.9 to 0.5 kg in a one-adsorber bed ACS increases the SCP by 82% from 65.8 to 119.4 W/kg at cycle time of 20 min. However, the COP reduces by 37% because of the increase in the adsorber bed to adsorbent mass ratio. The results also show that the thermal mass of the evaporator limits the performance of the ACS, especially under short cycle times (8–20 min). A second adsorber bed is added to the one-adsorbed bed ACS test bed to generate continuous cooling in the evaporator. Comparing the performance of one- and two-adsorber bed ACS packed with 0.5 kg of FAM-Z02 particles and cycle time of 20 min shows that the SCP and COP of the two-adsorber bed ACS increase by 28% and 47%, respectively.

Suggested Citation

  • Sharafian, Amir & Nemati Mehr, Seyyed Mahdi & Thimmaiah, Poovanna Cheppudira & Huttema, Wendell & Bahrami, Majid, 2016. "Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications," Energy, Elsevier, vol. 112(C), pages 481-493.
  • Handle: RePEc:eee:energy:v:112:y:2016:i:c:p:481-493
    DOI: 10.1016/j.energy.2016.06.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216308738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.06.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santamaria, Salvatore & Sapienza, Alessio & Frazzica, Andrea & Freni, Angelo & Girnik, Ilya S. & Aristov, Yuri I., 2014. "Water adsorption dynamics on representative pieces of real adsorbers for adsorptive chillers," Applied Energy, Elsevier, vol. 134(C), pages 11-19.
    2. Lu, Z.S. & Wang, R.Z., 2014. "Study of the new composite adsorbent of salt LiCl/silica gel–methanol used in an innovative adsorption cooling machine driven by low temperature heat source," Renewable Energy, Elsevier, vol. 63(C), pages 445-451.
    3. Critoph, R.E., 1999. "Rapid cycling solar/biomass powered adsorption refrigeration system," Renewable Energy, Elsevier, vol. 16(1), pages 673-678.
    4. Zhang, L.Z. & Wang, L., 1999. "Momentum and heat transfer in the adsorbent of a waste-heat adsorption cooling system," Energy, Elsevier, vol. 24(7), pages 605-624.
    5. Myat, Aung & Kim Choon, Ng & Thu, Kyaw & Kim, Young-Deuk, 2013. "Experimental investigation on the optimal performance of Zeolite–water adsorption chiller," Applied Energy, Elsevier, vol. 102(C), pages 582-590.
    6. Askalany, Ahmed A. & Salem, M. & Ismael, I.M. & Ali, A.H.H. & Morsy, M.G. & Saha, Bidyut B., 2013. "An overview on adsorption pairs for cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 565-572.
    7. Abdullah, Mohammad Omar & Tan, Ivy Ai Wei & Lim, Leo Sing, 2011. "Automobile adsorption air-conditioning system using oil palm biomass-based activated carbon: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2061-2072, May.
    8. Cheppudira Thimmaiah, Poovanna & Sharafian, Amir & Huttema, Wendell & McCague, Claire & Bahrami, Majid, 2016. "Effects of capillary-assisted tubes with different fin geometries on the performance of a low-operating pressure evaporator for adsorption cooling system applications," Applied Energy, Elsevier, vol. 171(C), pages 256-265.
    9. Kiplagat, J.K. & Wang, R.Z. & Oliveira, R.G. & Li, T.X. & Liang, M., 2013. "Experimental study on the effects of the operation conditions on the performance of a chemisorption air conditioner powered by low grade heat," Applied Energy, Elsevier, vol. 103(C), pages 571-580.
    10. Sapienza, Alessio & Santamaria, Salvatore & Frazzica, Andrea & Freni, Angelo, 2011. "Influence of the management strategy and operating conditions on the performance of an adsorption chiller," Energy, Elsevier, vol. 36(9), pages 5532-5538.
    11. Critoph, R.E., 1996. "Towards a one tonne per day solar ice maker," Renewable Energy, Elsevier, vol. 9(1), pages 626-631.
    12. Sharafian, Amir & Bahrami, Majid, 2014. "Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 440-451.
    13. Okunev, Boris N. & Aristov, Yuri I., 2014. "Making adsorptive chillers faster by a proper choice of adsorption isobar shape: Comparison of optimal and real adsorbents," Energy, Elsevier, vol. 76(C), pages 400-405.
    14. Demir, Hasan & Mobedi, Moghtada & Ülkü, Semra, 2008. "A review on adsorption heat pump: Problems and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2381-2403, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Weckerle & Marius Dörr & Marc Linder & Inga Bürger, 2020. "A Compact Thermally Driven Cooling System Based on Metal Hydrides," Energies, MDPI, vol. 13(10), pages 1-23, May.
    2. Thimmaiah, Poovanna Cheppudira & Sharafian, Amir & Rouhani, Mina & Huttema, Wendell & Bahrami, Majid, 2017. "Evaluation of low-pressure flooded evaporator performance for adsorption chillers," Energy, Elsevier, vol. 122(C), pages 144-158.
    3. Cheppudira Thimmaiah, Poovanna & Sharafian, Amir & Huttema, Wendell & McCague, Claire & Bahrami, Majid, 2016. "Effects of capillary-assisted tubes with different fin geometries on the performance of a low-operating pressure evaporator for adsorption cooling system applications," Applied Energy, Elsevier, vol. 171(C), pages 256-265.
    4. Chao, Jingwei & Xu, Jiaxing & Yan, Taisen & Xiang, Shizhao & Bai, Zhaoyuan & Wang, Ruzhu & Li, Tingxian, 2023. "Performance analysis of sorption thermal battery for high-density cold energy storage enabled by novel tube-free evaporator," Energy, Elsevier, vol. 273(C).
    5. Chao, Jingwei & Xu, Jiaxing & Xiang, Shizhao & Bai, Zhaoyuan & Yan, Taisen & Wang, Pengfei & Wang, Ruzhu & Li, Tingxian, 2023. "High energy-density and power-density cold storage enabled by sorption thermal battery based on liquid-gas phase change process," Applied Energy, Elsevier, vol. 334(C).
    6. Tokarev, M.M. & Aristov, Yu.I., 2017. "A new version of the Large Temperature Jump method: The thermal response (T–LTJ)," Energy, Elsevier, vol. 140(P1), pages 481-487.
    7. Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Kyle R. Gluesenkamp & Andrea Frazzica & Andreas Velte & Steven Metcalf & Zhiyao Yang & Mina Rouhani & Corey Blackman & Ming Qu & Eric Laurenz & Angeles Rivero-Pacho & Sam Hinmers & Robert Critoph & Ma, 2020. "Experimentally Measured Thermal Masses of Adsorption Heat Exchangers," Energies, MDPI, vol. 13(5), pages 1-21, March.
    9. Sun, X.Y. & Dai, Y.J. & Ge, T.S. & Zhao, Y. & Wang, R.Z., 2017. "Comparison of performance characteristics of desiccant coated air-water heat exchanger with conventional air-water heat exchanger – Experimental and analytical investigation," Energy, Elsevier, vol. 137(C), pages 399-411.
    10. Steven Metcalf & Ángeles Rivero-Pacho & Robert Critoph, 2021. "Design and Large Temperature Jump Testing of a Modular Finned-Tube Carbon–Ammonia Adsorption Generator for Gas-Fired Heat Pumps," Energies, MDPI, vol. 14(11), pages 1-17, June.
    11. Salvatore Vasta, 2023. "Adsorption Air-Conditioning for Automotive Applications: A Critical Review," Energies, MDPI, vol. 16(14), pages 1-35, July.
    12. Yang, Zhiyao & Qu, Ming & Gluesenkamp, Kyle R., 2020. "Design screening and analysis of gas-fired ammonia-based chemisorption heat pumps for space heating in cold climate," Energy, Elsevier, vol. 207(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharafian, Amir & Bahrami, Majid, 2014. "Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 440-451.
    2. Sharafian, Amir & Bahrami, Majid, 2015. "Critical analysis of thermodynamic cycle modeling of adsorption cooling systems for light-duty vehicle air conditioning applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 857-869.
    3. Pinheiro, Joana M. & Salústio, Sérgio & Rocha, João & Valente, Anabela A. & Silva, Carlos M., 2020. "Adsorption heat pumps for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Grekova, A.D. & Girnik, I.S. & Nikulin, V.V. & Tokarev, M.M. & Gordeeva, L.G. & Aristov, Yu.I., 2016. "New composite sorbents of water and methanol “salt in anodic alumina”: Evaluation for adsorption heat transformation," Energy, Elsevier, vol. 106(C), pages 231-239.
    5. Sapienza, Alessio & Palomba, Valeria & Gullì, Giuseppe & Frazzica, Andrea & Vasta, Salvatore, 2017. "A new management strategy based on the reallocation of ads-/desorption times: Experimental operation of a full-scale 3 beds adsorption chiller," Applied Energy, Elsevier, vol. 205(C), pages 1081-1090.
    6. Hamdy, Mohamed & Askalany, Ahmed A. & Harby, K. & Kora, Nader, 2015. "An overview on adsorption cooling systems powered by waste heat from internal combustion engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1223-1234.
    7. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    8. Sapienza, Alessio & Gullì, Giuseppe & Calabrese, Luigi & Palomba, Valeria & Frazzica, Andrea & Brancato, Vincenza & La Rosa, Davide & Vasta, Salvatore & Freni, Angelo & Bonaccorsi, Lucio & Cacciola, G, 2016. "An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers," Applied Energy, Elsevier, vol. 179(C), pages 929-938.
    9. Kyle R. Gluesenkamp & Andrea Frazzica & Andreas Velte & Steven Metcalf & Zhiyao Yang & Mina Rouhani & Corey Blackman & Ming Qu & Eric Laurenz & Angeles Rivero-Pacho & Sam Hinmers & Robert Critoph & Ma, 2020. "Experimentally Measured Thermal Masses of Adsorption Heat Exchangers," Energies, MDPI, vol. 13(5), pages 1-21, March.
    10. Habib, Khairul & Choudhury, Biplab & Chatterjee, Pradip Kumar & Saha, Bidyut Baran, 2013. "Study on a solar heat driven dual-mode adsorption chiller," Energy, Elsevier, vol. 63(C), pages 133-141.
    11. Mohammadzadeh Kowsari, Milad & Niazmand, Hamid & Tokarev, Mikhail Mikhailovich, 2018. "Bed configuration effects on the finned flat-tube adsorption heat exchanger performance: Numerical modeling and experimental validation," Applied Energy, Elsevier, vol. 213(C), pages 540-554.
    12. Golparvar, Behzad & Niazmand, Hamid & Sharafian, Amir & Ahmadian Hosseini, Amirjavad, 2018. "Optimum fin spacing of finned tube adsorber bed heat exchangers in an exhaust gas-driven adsorption cooling system," Applied Energy, Elsevier, vol. 232(C), pages 504-516.
    13. He, Fang & Nagano, Katsunori & Seol, Sung-Hoon & Togawa, Junya, 2022. "Thermal performance improvement of AHP using corrugated heat exchanger by dip-coating method with mass recovery," Energy, Elsevier, vol. 239(PE).
    14. Girnik, Ilya S. & Aristov, Yuri I., 2016. "Dynamic optimization of adsorptive chillers: The “AQSOA™-FAM-Z02 – Water” working pair," Energy, Elsevier, vol. 106(C), pages 13-22.
    15. He, Fang & Nagano, Katsunori & Togawa, Junya, 2020. "Experimental study and development of a low-cost 1 kW adsorption chiller using composite adsorbent based on natural mesoporous material," Energy, Elsevier, vol. 209(C).
    16. Palomba, Valeria & Sapienza, Alessio & Aristov, Yuri, 2019. "Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage," Applied Energy, Elsevier, vol. 248(C), pages 299-309.
    17. Allouhi, A. & Kousksou, T. & Jamil, A. & El Rhafiki, T. & Mourad, Y. & Zeraouli, Y., 2015. "Optimal working pairs for solar adsorption cooling applications," Energy, Elsevier, vol. 79(C), pages 235-247.
    18. Verde, M. & Harby, K. & de Boer, Robert & Corberán, José M., 2016. "Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part II - Performance optimization under different real driving conditions," Energy, Elsevier, vol. 115(P1), pages 996-1009.
    19. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Thimmaiah, Poovanna Cheppudira & Sharafian, Amir & Rouhani, Mina & Huttema, Wendell & Bahrami, Majid, 2017. "Evaluation of low-pressure flooded evaporator performance for adsorption chillers," Energy, Elsevier, vol. 122(C), pages 144-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:112:y:2016:i:c:p:481-493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.