IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4930-d1178855.html
   My bibliography  Save this article

Increasing Thermal Efficiency: Methods, Case Studies, and Integration of Heat Exchangers with Renewable Energy Sources and Heat Pumps for Desalination

Author

Listed:
  • Konstantin Osintsev

    (Department of Industrial Thermal Power Engineering, Institute of Energy and Power Engineering, South Ural State University, 76 Prospekt Lenina, 454080 Chelyabinsk, Russia)

  • Sergei Aliukov

    (Department of Automotive Engineering, Institute of Engineering and Technology, South Ural State University, 76 Prospekt Lenina, 454080 Chelyabinsk, Russia)

  • Sulpan Kuskarbekova

    (Department of Industrial Thermal Power Engineering, Institute of Energy and Power Engineering, South Ural State University, 76 Prospekt Lenina, 454080 Chelyabinsk, Russia)

  • Tatyana Tarasova

    (Department of Industrial Thermal Power Engineering, Institute of Energy and Power Engineering, South Ural State University, 76 Prospekt Lenina, 454080 Chelyabinsk, Russia)

  • Aleksandr Karelin

    (Department of Industrial Thermal Power Engineering, Institute of Energy and Power Engineering, South Ural State University, 76 Prospekt Lenina, 454080 Chelyabinsk, Russia)

  • Vladimir Konchakov

    (Department of Industrial Thermal Power Engineering, Institute of Energy and Power Engineering, South Ural State University, 76 Prospekt Lenina, 454080 Chelyabinsk, Russia)

  • Olga Kornyakova

    (Department of Industrial Thermal Power Engineering, Institute of Energy and Power Engineering, South Ural State University, 76 Prospekt Lenina, 454080 Chelyabinsk, Russia)

Abstract

The article presents an overview of modern analytical methods and experimental studies on the use of heat exchangers as part of different schemes, as well as technologies that increase the efficiency of heat exchangers using renewable energy sources. The main types of heat exchangers, and the principles of their operation, are considered. In addition, modern technologies for increasing the efficiency of heat exchangers through design are described. The practical experience of using plate heat exchangers in industry has been studied. An overview of the software development that is used in the design and optimization of heat exchange devices, as well as for the improvement of their energy efficiency, is presented. The presented mathematical models can be used for software that is applicable both to individual segments of plates of heat exchangers and heat exchangers in general, taking into account the dependence of the installation of the entire circuit on environmental parameters and location. In conclusion, recommendations are given for further research directions in the field of using heat exchangers with the inclusion of renewable energy sources. The technique of an energy technology complex, including a heat pump, a photovoltaic panel, and a desalination plant, is presented. The methodology is built around the basic design and energy balance of the complex, and it is also considered from the point of view of the exergetic balance. This allows for the use of additional components, such as a turbo expander for the implementation of the organic Rankine cycle, a wind turbine, and a solar concentrator. This scientific approach can become unified for the design and operation of an energy technology complex. In addition, an exergetic calculation method is presented for a thermal desalination plant operating as part of an energy technology complex with renewable energy sources.

Suggested Citation

  • Konstantin Osintsev & Sergei Aliukov & Sulpan Kuskarbekova & Tatyana Tarasova & Aleksandr Karelin & Vladimir Konchakov & Olga Kornyakova, 2023. "Increasing Thermal Efficiency: Methods, Case Studies, and Integration of Heat Exchangers with Renewable Energy Sources and Heat Pumps for Desalination," Energies, MDPI, vol. 16(13), pages 1-36, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4930-:d:1178855
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4930/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4930/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nima Javanshir & Seyed Mahmoudi S. M. & M. Akbari Kordlar & Marc A. Rosen, 2020. "Energy and Cost Analysis and Optimization of a Geothermal-Based Cogeneration Cycle Using an Ammonia-Water Solution: Thermodynamic and Thermoeconomic Viewpoints," Sustainability, MDPI, vol. 12(2), pages 1-25, January.
    2. Christos Tzivanidis & Evangelos Bellos, 2020. "A Comparative Study of Solar-Driven Trigeneration Systems for the Building Sector," Energies, MDPI, vol. 13(8), pages 1-21, April.
    3. Tomasz Mołczan & Piotr Cyklis, 2022. "Mathematical Model of Air Dryer Heat Pump Exchangers," Energies, MDPI, vol. 15(19), pages 1-23, September.
    4. Liya Ren & Jianyu Liu & Huaixin Wang, 2020. "Thermodynamic Optimization of a Waste Heat Power System under Economic Constraint," Energies, MDPI, vol. 13(13), pages 1-23, July.
    5. Guillermo Valencia Ochoa & Javier Cárdenas Gutierrez & Jorge Duarte Forero, 2020. "Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine," Resources, MDPI, vol. 9(1), pages 1-23, January.
    6. Ji, Yongming & Wu, Wenze & Hu, Songtao, 2023. "Long-term performance of a front-end capillary heat exchanger for a metro source heat pump system," Applied Energy, Elsevier, vol. 335(C).
    7. Guillermo Valencia Ochoa & Cesar Isaza-Roldan & Jorge Duarte Forero, 2020. "Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential," Energies, MDPI, vol. 13(6), pages 1-22, March.
    8. Tobias Popp & Andreas P. Weiß & Florian Heberle & Julia Winkler & Rüdiger Scharf & Theresa Weith & Dieter Brüggemann, 2021. "Experimental Characterization of an Adaptive Supersonic Micro Turbine for Waste Heat Recovery Applications," Energies, MDPI, vol. 15(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evgeny Solomin & Zaid Salah & Konstantin Osintsev & Sergei Aliukov & Sulpan Kuskarbekova & Vladimir Konchakov & Alyona Olinichenko & Alexander Karelin & Tatyana Tarasova, 2023. "Ecological Hydrogen Production and Water Sterilization: An Innovative Approach to the Trigeneration of Renewable Energy Sources for Water Desalination: A Review," Energies, MDPI, vol. 16(17), pages 1-32, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantin Osintsev & Sergei Aliukov, 2022. "ORC Technology Based on Advanced Li-Br Absorption Refrigerator with Solar Collectors and a Contact Heat Exchanger for Greenhouse Gas Capture," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    2. Alvin Kiprono Bett & Saeid Jalilinasrabady, 2021. "Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis," Energies, MDPI, vol. 14(20), pages 1-17, October.
    3. Dora Villada-Castillo & Guillermo Valencia-Ochoa & Jorge Duarte-Forero, 2023. "Thermohydraulic and Economic Evaluation of a New Design for Printed Circuit Heat Exchangers in Supercritical CO 2 Brayton Cycle," Energies, MDPI, vol. 16(5), pages 1-24, February.
    4. Davide Di Battista & Roberto Cipollone, 2023. "Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation," Energies, MDPI, vol. 16(8), pages 1-28, April.
    5. Andrea Arbula Blecich & Paolo Blecich, 2023. "Thermoeconomic Analysis of Subcritical and Supercritical Isobutane Cycles for Geothermal Power Generation," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    6. Meriño Stand, L. & Valencia Ochoa, G. & Duarte Forero, J., 2021. "Energy and exergy assessment of a combined supercritical Brayton cycle-orc hybrid system using solar radiation and coconut shell biomass as energy source," Renewable Energy, Elsevier, vol. 175(C), pages 119-142.
    7. Farid Antonio Barrozo Budes & Guillermo Valencia Ochoa & Luis Guillermo Obregon & Adriana Arango-Manrique & José Ricardo Núñez Álvarez, 2020. "Energy, Economic, and Environmental Evaluation of a Proposed Solar-Wind Power On-grid System Using HOMER Pro ® : A Case Study in Colombia," Energies, MDPI, vol. 13(7), pages 1-19, April.
    8. Ren, Zhili & Gao, Xiangkui & Wang, Tao & Xiao, Yimin & Zeng, Zhen & Chen, Long & Pang, Yantao & Ma, Yunlong & Xiong, Qian & Chen, Senlin & Ren, Yucheng, 2024. "Numerical study on thermal storage and exothermic characteristics of subway station fresh air shaft surrounding rock," Energy, Elsevier, vol. 293(C).
    9. Fahad Awjah Almehmadi & H. F. Elattar & A. Fouda & Saeed Alqaed & Jawed Mustafa & Mathkar A. Alharthi & H. A. Refaey, 2022. "Energy Performance Assessment of a Novel Solar Poly-Generation System Using Various ORC Working Fluids in Residential Buildings," Energies, MDPI, vol. 15(21), pages 1-25, November.
    10. Maragna, Charles & Altamirano, Amín & Tréméac, Brice & Fabre, Florent & Rouzic, Laurène & Barcellini, Pierre, 2024. "Design and optimization of a geothermal absorption cooling system in a tropical climate," Applied Energy, Elsevier, vol. 364(C).
    11. Aghabalazadeh, Mohammad & Neshat, Elaheh, 2024. "Proposal and optimization of a novel biomass-based tri-generation system using energy, exergy and exergoeconomic analyses and design of experiments method," Energy, Elsevier, vol. 288(C).
    12. Ji, Yongming & Shen, Shouheng & Wang, Xinru & Zhang, Hui & Qi, Haoyu & Hu, Songtao, 2024. "Impact of groundwater seepage on thermal performance of capillary heat exchangers in subway tunnel lining," Renewable Energy, Elsevier, vol. 227(C).
    13. Chen, Zhaoxin & Li, Jiaxuan & Tang, Guoqiang & Zhang, Jiahao & Zhang, Donghai & Gao, Penghui, 2024. "High-efficiency heating and cooling technology with embedded pipes in buildings and underground structures: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    14. Carlo Ingrao & Claudia Arcidiacono & Valentina Siracusa & Monia Niero & Marzia Traverso, 2021. "Life Cycle Sustainability Analysis of Resource Recovery from Waste Management Systems in a Circular Economy Perspective Key Findings from This Special Issue," Resources, MDPI, vol. 10(4), pages 1-9, April.
    15. Ma, Mengru & Yuan, Xiaoqing & Wang, Tao & Xiao, Yimin, 2024. "Computational method for convective heat transfer coefficients along sizable air-intake tunnel passages based on empirical data," Applied Energy, Elsevier, vol. 367(C).
    16. Konstantin Osintsev & Sergei Aliukov & Yuri Prikhodko, 2021. "A Case study of Exergy Losses of a Ground Heat Pump and Photovoltaic Cells System and Their Optimization," Energies, MDPI, vol. 14(8), pages 1-22, April.
    17. Enhua Wang & Ningjian Peng, 2023. "A Review on the Preliminary Design of Axial and Radial Turbines for Small-Scale Organic Rankine Cycle," Energies, MDPI, vol. 16(8), pages 1-20, April.
    18. Ji, Yongming & Yin, Zhenfeng & Jiao, Jiachen & Hu, Songtao, 2023. "Long-term performance of a subway source heat pump system with two types of front-end heat exchangers," Renewable Energy, Elsevier, vol. 210(C), pages 640-655.
    19. Yang Liu & Han Yue & Na Wang & Heng Zhang & Haiping Chen, 2020. "Design and Transient Analysis of a Natural Gas-Assisted Solar LCPV/T Trigeneration System," Energies, MDPI, vol. 13(22), pages 1-24, November.
    20. Javanshir, Nima & Syri, Sanna & Tervo, Seela & Rosin, Argo, 2023. "Operation of district heat network in electricity and balancing markets with the power-to-heat sector coupling," Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4930-:d:1178855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.