IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5930-d444650.html
   My bibliography  Save this article

Design and Transient Analysis of a Natural Gas-Assisted Solar LCPV/T Trigeneration System

Author

Listed:
  • Yang Liu

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Han Yue

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Na Wang

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Heng Zhang

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Haiping Chen

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

This paper proposes a natural gas assisted solar low-concentrating photovoltaic/thermal trigeneration (NG-LCPV/T-TG) system. This novel system simultaneously provides electrical, thermal and cooling energy to the user. The design and dynamic simulation performance of the NG-LCPV/T-TG system is completed using Transient System Simulation (TRNSYS) software. The results show that the system can satisfy the requirements of the cooling and heating load. The proposed system maintains the experimental room temperature at about 25 °C under the cooling mode, at about 20 °C under the heating mode. The electrical and thermal energy produced by the low-concentrating photovoltaic/thermal (LCPV/T) system are 3819 kWh and 18,374 kWh. Meanwhile, the maximum coefficient of performance (COP) of the low temperature heat pump (LHP), high temperature heat pump (HHP) and chiller are 5, 2.2 and 0.6, respectively. This proposed system realizes the coupling of natural gas and solar energy in a building. In summary, this trigeneration system is feasible and it promotes the implementation of building integrated high-efficiency energy supply system.

Suggested Citation

  • Yang Liu & Han Yue & Na Wang & Heng Zhang & Haiping Chen, 2020. "Design and Transient Analysis of a Natural Gas-Assisted Solar LCPV/T Trigeneration System," Energies, MDPI, vol. 13(22), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5930-:d:444650
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5930/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5930/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jiangjiang & Yang, Ying, 2017. "A hybrid operating strategy of combined cooling, heating and power system for multiple demands considering domestic hot water preferentially: A case study," Energy, Elsevier, vol. 122(C), pages 444-457.
    2. Su, Bosheng & Han, Wei & Qu, Wanjun & Liu, Changchun & Jin, Hongguang, 2018. "A new hybrid photovoltaic/thermal and liquid desiccant system for trigeneration application," Applied Energy, Elsevier, vol. 226(C), pages 808-818.
    3. Heng, Zhang & Feipeng, Chen & Yang, Liu & Haiping, Chen & Kai, Liang & Boran, Yang, 2019. "The performance analysis of a LCPV/T assisted absorption refrigeration system," Renewable Energy, Elsevier, vol. 143(C), pages 1852-1864.
    4. Xu, Cheng & Bai, Pu & Xin, Tuantuan & Hu, Yue & Xu, Gang & Yang, Yongping, 2017. "A novel solar energy integrated low-rank coal fired power generation using coal pre-drying and an absorption heat pump," Applied Energy, Elsevier, vol. 200(C), pages 170-179.
    5. Yan, Yi & Zhang, Chenghui & Li, Ke & Wang, Zhen, 2018. "An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage," Applied Energy, Elsevier, vol. 210(C), pages 1151-1166.
    6. Wang, Jiangjiang & Xie, Xinqi & Lu, Yanchao & Liu, Boxiang & Li, Xiaojing, 2018. "Thermodynamic performance analysis and comparison of a combined cooling heating and power system integrated with two types of thermal energy storage," Applied Energy, Elsevier, vol. 219(C), pages 114-122.
    7. Widyolar, Bennett K. & Abdelhamid, Mahmoud & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2017. "Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 101(C), pages 1379-1389.
    8. Settino, Jessica & Sant, Tonio & Micallef, Christopher & Farrugia, Mario & Spiteri Staines, Cyril & Licari, John & Micallef, Alexander, 2018. "Overview of solar technologies for electricity, heating and cooling production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 892-909.
    9. Francesco Calise & Massimo Dentice D'Accadia & Antonio Piacentino & Maria Vicidomini, 2015. "Thermoeconomic Optimization of a Renewable Polygeneration System Serving a Small Isolated Community," Energies, MDPI, vol. 8(2), pages 1-30, January.
    10. Christos Tzivanidis & Evangelos Bellos, 2020. "A Comparative Study of Solar-Driven Trigeneration Systems for the Building Sector," Energies, MDPI, vol. 13(8), pages 1-21, April.
    11. Daneshazarian, Reza & Cuce, Erdem & Cuce, Pinar Mert & Sher, Farooq, 2018. "Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 473-492.
    12. Zhang, Heng & Chen, Haiping & Han, Yuchen & Liu, Haowen & Li, Mingjie, 2017. "Experimental and simulation studies on a novel compound parabolic concentrator," Renewable Energy, Elsevier, vol. 113(C), pages 784-794.
    13. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    14. Ighball Baniasad Askari & Francesco Calise & Maria Vicidomini, 2019. "Design and Comparative Techno-Economic Analysis of Two Solar Polygeneration Systems Applied for Electricity, Cooling and Fresh Water Production," Energies, MDPI, vol. 12(22), pages 1-35, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Na & Chu, Shangling & Cheng, Chao & Zhang, Heng & Chen, Haiping & Gao, Dan, 2024. "Performance research and multi-objective optimization of concentrating photovoltaic/thermal coupled air source heat pump heating system," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anand, B. & Shankar, R. & Murugavelh, S. & Rivera, W. & Midhun Prasad, K. & Nagarajan, R., 2021. "A review on solar photovoltaic thermal integrated desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Dengxin Ai & Ke Xu & Heng Zhang & Tianheng Chen & Guilin Wang, 2022. "Simulation Research on a Cogeneration System of Low-Concentration Photovoltaic/Thermal Coupled with Air-Source Heat Pump," Energies, MDPI, vol. 15(3), pages 1-25, February.
    3. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Kasaeian, Alibakhsh & Bellos, Evangelos & Shamaeizadeh, Armin & Tzivanidis, Christos, 2020. "Solar-driven polygeneration systems: Recent progress and outlook," Applied Energy, Elsevier, vol. 264(C).
    5. Yu, Y. & Yang, H. & Peng, J. & Long, E., 2019. "Performance comparisons of two flat-plate photovoltaic thermal collectors with different channel configurations," Energy, Elsevier, vol. 175(C), pages 300-308.
    6. Mao, Anjia & Yu, Tiantian & Ding, Zhaohao & Fang, Sidun & Guo, Jinran & Sheng, Qianqian, 2022. "Optimal scheduling for seaport integrated energy system considering flexible berth allocation," Applied Energy, Elsevier, vol. 308(C).
    7. Cesar Lucio & Omar Behar & Bassam Dally, 2023. "Techno-Economic Assessment of CPVT Spectral Splitting Technology: A Case Study on Saudi Arabia," Energies, MDPI, vol. 16(14), pages 1-23, July.
    8. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    10. Gibb, Duncan & Johnson, Maike & Romaní, Joaquim & Gasia, Jaume & Cabeza, Luisa F. & Seitz, Antje, 2018. "Process integration of thermal energy storage systems – Evaluation methodology and case studies," Applied Energy, Elsevier, vol. 230(C), pages 750-760.
    11. Ekaterina Sokolova & Khashayar Sadeghi & Seyed Hadi Ghazaie & Dario Barsi & Francesca Satta & Pietro Zunino, 2022. "Feasibility of Hybrid Desalination Plants Coupled with Small Gas Turbine CHP Systems," Energies, MDPI, vol. 15(10), pages 1-13, May.
    12. Bai, Zhang & Liu, Qibin & Gong, Liang & Lei, Jing, 2019. "Application of a mid-/low-temperature solar thermochemical technology in the distributed energy system with cooling, heating and power production," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Wang, Jiangjiang & Lu, Zherui & Li, Meng & Lior, Noam & Li, Weihua, 2019. "Energy, exergy, exergoeconomic and environmental (4E) analysis of a distributed generation solar-assisted CCHP (combined cooling, heating and power) gas turbine system," Energy, Elsevier, vol. 175(C), pages 1246-1258.
    14. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    15. Heng, Zhang & Feipeng, Chen & Yang, Liu & Haiping, Chen & Kai, Liang & Boran, Yang, 2019. "The performance analysis of a LCPV/T assisted absorption refrigeration system," Renewable Energy, Elsevier, vol. 143(C), pages 1852-1864.
    16. Modi, Anish & Bühler, Fabian & Andreasen, Jesper Graa & Haglind, Fredrik, 2017. "A review of solar energy based heat and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1047-1064.
    17. Lu, Kegui & Yu, Qiongwan & Zhao, Bin & Pei, Gang, 2023. "Performance analysis of a novel PV/T hybrid system based on spectral beam splitting," Renewable Energy, Elsevier, vol. 207(C), pages 398-406.
    18. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    19. Liu, Zhenghao & Zhang, Heng & Cheng, Chao & Huang, Jiguang, 2021. "Energetic performance analysis on a membrane distillation integrated with low concentrating PV/T hybrid system," Renewable Energy, Elsevier, vol. 179(C), pages 1815-1825.
    20. Huang, Hongxu & Liang, Rui & Lv, Chaoxian & Lu, Mengtian & Gong, Dunwei & Yin, Shulin, 2021. "Two-stage robust stochastic scheduling for energy recovery in coal mine integrated energy system," Applied Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5930-:d:444650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.