IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2077-d532609.html
   My bibliography  Save this article

A Case study of Exergy Losses of a Ground Heat Pump and Photovoltaic Cells System and Their Optimization

Author

Listed:
  • Konstantin Osintsev

    (Institute of Engineering and Technology, South Ural State University, 76 Prospekt Lenina, 454080 Chelyabinsk, Russia)

  • Sergei Aliukov

    (Institute of Engineering and Technology, South Ural State University, 76 Prospekt Lenina, 454080 Chelyabinsk, Russia)

  • Yuri Prikhodko

    (Institute of Engineering and Technology, South Ural State University, 76 Prospekt Lenina, 454080 Chelyabinsk, Russia)

Abstract

The aim of this scientific research is to experimentally determine the exergy losses of a ground heat pump and further optimization for more efficient use of operating modes and improvement of individual structural elements. In addition, it is proposed to use photovoltaic panels as a backup power source for the experimental installation under study. The exergetic losses are calculated, not only for the ground heat pump itself, with R407C refrigerant. The research methodology consists in a comprehensive assessment of exergetic flows, their optimization using new methods of approximation of piecewise linear functions, and the development of prerequisites for the use of anergy as one of the components of a new type of analysis of the efficiency of low-potential energy sources. As a result of processing the experimental data, the values of Coefficient of performance (COP) 4.136, exergetic temperature for the lower heat source 0.0253 and for the upper heat source 0.155, exergetic efficiency of the installation 0.62, and total loss of specific exergy of the heat pump 24.029 kJ/kg were obtained. Controllers with the Modbus protocol were used for data collection. Matlab Simulink was used to process the experimental data. When carrying out the procedure for optimizing the operating modes and selecting several modes with minimal exergetic losses, an important role is given to mathematical methods of processing statistical data. The method of increasing the efficiency of the heat pump is shown, first of all, based on the use of photovoltaic panels as a backup power source and optimization of exergetic losses due to exergo-anergetic evaluation of operating modes. The authors present the measurement errors of the heat pump plant parameters in the form of a 3D Gaussian curve, which becomes possible only when applying new approximation methods in the processing of measurements.

Suggested Citation

  • Konstantin Osintsev & Sergei Aliukov & Yuri Prikhodko, 2021. "A Case study of Exergy Losses of a Ground Heat Pump and Photovoltaic Cells System and Their Optimization," Energies, MDPI, vol. 14(8), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2077-:d:532609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2077/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2077/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Konstantin Osintsev & Sergei Aliukov & Sulpan Kuskarbekova, 2021. "Experimental Study of a Coil Type Steam Boiler Operated on an Oil Field in the Subarctic Continental Climate," Energies, MDPI, vol. 14(4), pages 1-23, February.
    2. Nima Javanshir & Seyed Mahmoudi S. M. & M. Akbari Kordlar & Marc A. Rosen, 2020. "Energy and Cost Analysis and Optimization of a Geothermal-Based Cogeneration Cycle Using an Ammonia-Water Solution: Thermodynamic and Thermoeconomic Viewpoints," Sustainability, MDPI, vol. 12(2), pages 1-25, January.
    3. Evgeniy Toropov & Konstantin Osintsev & Sergei Aliukov, 2019. "New Theoretical and Methodological Approaches to the Study of Heat Transfer in Coal Dust Combustion," Energies, MDPI, vol. 12(1), pages 1-14, January.
    4. Crivellari, Anna & Cozzani, Valerio & Dincer, Ibrahim, 2019. "Exergetic and exergoeconomic analyses of novel methanol synthesis processes driven by offshore renewable energies," Energy, Elsevier, vol. 187(C).
    5. Gaigalis, Vygandas & Skema, Romualdas & Marcinauskas, Kazys & Korsakiene, Irena, 2016. "A review on Heat Pumps implementation in Lithuania in compliance with the National Energy Strategy and EU policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 841-858.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantin Osintsev & Sergei Aliukov & Sulpan Kuskarbekova, 2021. "Development of Methodological Bases of the Processes of Steam Formation in Coil Type Boilers Using Solar Concentrators," Energies, MDPI, vol. 14(8), pages 1-22, April.
    2. Konstantin Osintsev & Sergei Aliukov, 2022. "ORC Technology Based on Advanced Li-Br Absorption Refrigerator with Solar Collectors and a Contact Heat Exchanger for Greenhouse Gas Capture," Sustainability, MDPI, vol. 14(9), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantin Osintsev & Sergei Aliukov & Yuri Prikhodko, 2021. "Management of the Torch Structure with the New Methodological Approaches to Regulation Based on Neural Network Algorithms," Energies, MDPI, vol. 14(7), pages 1-17, March.
    2. Konstantin Osintsev & Seregei Aliukov & Alexander Shishkov, 2021. "Improvement Dependability of Offshore Horizontal-Axis Wind Turbines by Applying New Mathematical Methods for Calculation the Excess Speed in Case of Wind Gusts," Energies, MDPI, vol. 14(11), pages 1-22, May.
    3. Konstantin Osintsev & Sergei Aliukov & Sulpan Kuskarbekova, 2021. "Development of Methodological Bases of the Processes of Steam Formation in Coil Type Boilers Using Solar Concentrators," Energies, MDPI, vol. 14(8), pages 1-22, April.
    4. Anatoliy Alabugin & Konstantin Osintsev & Sergei Aliukov, 2021. "Methodological Foundations for Modeling the Processes of Combining Organic Fuel Generation Systems and Photovoltaic Cells into a Single Energy Technology Complex," Energies, MDPI, vol. 14(10), pages 1-38, May.
    5. Protopapadaki, Christina & Saelens, Dirk, 2017. "Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties," Applied Energy, Elsevier, vol. 192(C), pages 268-281.
    6. Wiranarongkorn, Kunlanan & Im-orb, Karittha & Panpranot, Joongjai & Maréchal, François & Arpornwichanop, Amornchai, 2021. "Exergy and exergoeconomic analyses of sustainable furfural production via reactive distillation," Energy, Elsevier, vol. 226(C).
    7. Konstantin Osintsev & Sergei Aliukov & Sulpan Kuskarbekova, 2021. "Experimental Study of a Coil Type Steam Boiler Operated on an Oil Field in the Subarctic Continental Climate," Energies, MDPI, vol. 14(4), pages 1-23, February.
    8. Andrea Arbula Blecich & Paolo Blecich, 2023. "Thermoeconomic Analysis of Subcritical and Supercritical Isobutane Cycles for Geothermal Power Generation," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    9. Zhang, Yuan & Liang, Tianyang & Yang, Ke, 2022. "An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization," Energy, Elsevier, vol. 247(C).
    10. Yan, Hongzhi & Hu, Bin & Wang, Ruzhu, 2021. "Air-source heat pump heating based water vapor compression for localized steam sterilization applications during the COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Tsagarakis, Konstantinos P. & Efthymiou, Loukia & Michopoulos, Apostolos & Mavragani, Amaryllis & Anđelković, Aleksandar S. & Antolini, Francesco & Bacic, Mario & Bajare, Diana & Baralis, Matteo & Bog, 2020. "A review of the legal framework in shallow geothermal energy in selected European countries: Need for guidelines," Renewable Energy, Elsevier, vol. 147(P2), pages 2556-2571.
    12. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    13. Maragna, Charles & Altamirano, Amín & Tréméac, Brice & Fabre, Florent & Rouzic, Laurène & Barcellini, Pierre, 2024. "Design and optimization of a geothermal absorption cooling system in a tropical climate," Applied Energy, Elsevier, vol. 364(C).
    14. Aghabalazadeh, Mohammad & Neshat, Elaheh, 2024. "Proposal and optimization of a novel biomass-based tri-generation system using energy, exergy and exergoeconomic analyses and design of experiments method," Energy, Elsevier, vol. 288(C).
    15. Nakyai, Teeranun & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai & Saebea, Dang, 2020. "Comparative exergoeconomic analysis of indirect and direct bio-dimethyl ether syntheses based on air-steam biomass gasification with CO2 utilization," Energy, Elsevier, vol. 209(C).
    16. Atalay, Halil & Aslan, Volkan, 2023. "Advanced exergoeconomic and exergy performance assessments of a wind and solar energy powered hybrid dryer," Renewable Energy, Elsevier, vol. 209(C), pages 218-230.
    17. Konstantin Osintsev & Sergei Aliukov, 2022. "ORC Technology Based on Advanced Li-Br Absorption Refrigerator with Solar Collectors and a Contact Heat Exchanger for Greenhouse Gas Capture," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    18. Amaya Martínez-Gracia & Sergio Usón & Mª Teresa Pintanel & Javier Uche & Ángel A. Bayod-Rújula & Alejandro Del Amo, 2021. "Exergy Assessment and Thermo-Economic Analysis of Hybrid Solar Systems with Seasonal Storage and Heat Pump Coupling in the Social Housing Sector in Zaragoza," Energies, MDPI, vol. 14(5), pages 1-32, February.
    19. Sneum, Daniel Møller & González, Mario Garzón & Gea-Bermúdez, Juan, 2021. "Increased heat-electricity sector coupling by constraining biomass use?," Energy, Elsevier, vol. 222(C).
    20. Javanshir, Nima & Syri, Sanna & Tervo, Seela & Rosin, Argo, 2023. "Operation of district heat network in electricity and balancing markets with the power-to-heat sector coupling," Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2077-:d:532609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.