IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3263-d805601.html
   My bibliography  Save this article

Multi-Cell-to-Multi-Cell Battery Equalization in Series Battery Packs Based on Variable Duty Cycle

Author

Listed:
  • Shengyi Luo

    (School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Dongchen Qin

    (School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Hongxia Wu

    (School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Tingting Wang

    (School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Jiangyi Chen

    (School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China)

Abstract

Batteries are widely used in our lives, but the inevitable inconsistencies in series-connected battery packs will seriously impact their energy utilization, cycle life and even jeopardize their safety in use. This paper proposes a balancing topology structure combining Buck-Boost circuit and switch array to reduce this inconsistency. This structure can realize multi-cell-to-multi-cell (MC2MC) battery balancing by controlling the switch array and having a fast balancing speed, easy expansion and few magnetic components. Then, the operation principle of the proposed balancing topology is analyzed, and the simulation model is verified. In addition, the effects of switching frequency and voltage difference on the equalization effect are further analyzed. The results show that the higher the switching frequency, the lower the time efficiency, but the higher the energy efficiency. The voltage difference significantly impacts the duty cycle, so it is absolutely necessary to introduce a variable duty cycle in the multi-cell-to-multi-cell equalization. Finally, eight series batteries are selected for simulation verification. The simulation results show that, compared with any-cell-to-any-cell (AC2AC) equalization, the time efficiency of multi-cell-to-multi-cell equalization is improved considerably, the energy efficiency is improved slightly, and the variance of the completed equalization is reduced, demonstrating the excellent performance of multi-cell-to-multi-cell equalization.

Suggested Citation

  • Shengyi Luo & Dongchen Qin & Hongxia Wu & Tingting Wang & Jiangyi Chen, 2022. "Multi-Cell-to-Multi-Cell Battery Equalization in Series Battery Packs Based on Variable Duty Cycle," Energies, MDPI, vol. 15(9), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3263-:d:805601
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3263/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3263/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Daowd & Mailier Antoine & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2013. "Single Switched Capacitor Battery Balancing System Enhancements," Energies, MDPI, vol. 6(4), pages 1-26, April.
    2. Xiaogang Wu & Zhihao Cui & Xuefeng Li & Jiuyu Du & Ye Liu, 2019. "Control Strategy for Active Hierarchical Equalization Circuits of Series Battery Packs," Energies, MDPI, vol. 12(11), pages 1-18, May.
    3. Das, Utpal Kumar & Shrivastava, Prashant & Tey, Kok Soon & Bin Idris, Mohd Yamani Idna & Mekhilef, Saad & Jamei, Elmira & Seyedmahmoudian, Mehdi & Stojcevski, Alex, 2020. "Advancement of lithium-ion battery cells voltage equalization techniques: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongchen Qin & Shuai Qin & Tingting Wang & Hongxia Wu & Jiangyi Chen, 2022. "Balanced Control System Based on Bidirectional Flyback DC Converter," Energies, MDPI, vol. 15(19), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chein-Chung Sun & Chun-Hung Chou & Yu-Liang Lin & Yu-Hua Huang, 2022. "A Cost-Effective Passive/Active Hybrid Equalizer Circuit Design," Energies, MDPI, vol. 15(6), pages 1-20, March.
    2. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Guangwei Wan & Qiang Zhang & Menghan Li & Siyuan Li & Zehao Fu & Junjie Liu & Gang Li, 2023. "Improved Battery Balancing Control Strategy for Reconfigurable Converter Systems," Energies, MDPI, vol. 16(15), pages 1-21, July.
    4. Alfredo Alvarez-Diazcomas & Adyr A. Estévez-Bén & Juvenal Rodríguez-Reséndiz & Miguel-Angel Martínez-Prado & Roberto V. Carrillo-Serrano & Suresh Thenozhi, 2020. "A Review of Battery Equalizer Circuits for Electric Vehicle Applications," Energies, MDPI, vol. 13(21), pages 1-29, October.
    5. João P. D. Miranda & Luis A. M. Barros & José Gabriel Pinto, 2023. "A Review on Power Electronic Converters for Modular BMS with Active Balancing," Energies, MDPI, vol. 16(7), pages 1-20, April.
    6. Xiaolin Wang & Ka Wai Eric Cheng & Yat Chi Fong, 2018. "Non-Equal Voltage Cell Balancing for Battery and Super-Capacitor Source Package Management System Using Tapped Inductor Techniques," Energies, MDPI, vol. 11(5), pages 1-12, April.
    7. Tian, Jiaqiang & Fan, Yuan & Pan, Tianhong & Zhang, Xu & Yin, Jianning & Zhang, Qingping, 2024. "A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Mohamed Daowd & Mailier Antoine & Noshin Omar & Philippe Lataire & Peter Van Den Bossche & Joeri Van Mierlo, 2014. "Battery Management System—Balancing Modularization Based on a Single Switched Capacitor and Bi-Directional DC/DC Converter with the Auxiliary Battery," Energies, MDPI, vol. 7(5), pages 1-41, April.
    9. Xu, Cheng & Zhang, E & Jiang, Kai & Wang, Kangli, 2022. "Dual fuzzy-based adaptive extended Kalman filter for state of charge estimation of liquid metal battery," Applied Energy, Elsevier, vol. 327(C).
    10. Chi Nguyen Van & Thuy Nguyen Vinh & Minh-Duc Ngo & Seon-Ju Ahn, 2021. "Optimal SoC Balancing Control for Lithium-Ion Battery Cells Connected in Series," Energies, MDPI, vol. 14(10), pages 1-18, May.
    11. Foad H. Gandoman & Emad M. Ahmed & Ziad M. Ali & Maitane Berecibar & Ahmed F. Zobaa & Shady H. E. Abdel Aleem, 2021. "Reliability Evaluation of Lithium-Ion Batteries for E-Mobility Applications from Practical and Technical Perspectives: A Case Study," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    12. Hoque, M.M. & Hannan, M.A. & Mohamed, A. & Ayob, A., 2017. "Battery charge equalization controller in electric vehicle applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1363-1385.
    13. Rodríguez-Iturriaga, Pablo & Anseán, David & Rodríguez-Bolívar, Salvador & García, Víctor Manuel & González, Manuela & López-Villanueva, Juan Antonio, 2024. "Modeling current-rate effects in lithium-ion batteries based on a distributed, multi-particle equivalent circuit model," Applied Energy, Elsevier, vol. 353(PA).
    14. Cuidong Xu & Ka Wai Eric Cheng, 2015. "A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation," Energies, MDPI, vol. 8(10), pages 1-19, September.
    15. Alfredo Alvarez-Diazcomas & Adyr A. Estévez-Bén & Juvenal Rodríguez-Reséndiz & Miguel-Angel Martínez-Prado & Jorge D. Mendiola-Santíbañez, 2020. "A Novel RC-Based Architecture for Cell Equalization in Electric Vehicles," Energies, MDPI, vol. 13(9), pages 1-16, May.
    16. Shu, Xing & Shen, Jiangwei & Chen, Zheng & Zhang, Yuanjian & Liu, Yonggang & Lin, Yan, 2022. "Remaining capacity estimation for lithium-ion batteries via co-operation of multi-machine learning algorithms," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    17. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    18. Hongrui Liu & Bo Li & Yixuan Guo & Chunfeng Du & Shilong Chen & Sizhao Lu, 2018. "Research into an Efficient Energy Equalizer for Lithium-Ion Battery Packs," Energies, MDPI, vol. 11(12), pages 1-11, December.
    19. Yang Yang & Wenchao Zhu & Changjun Xie & Ying Shi & Furong Liu & Weibo Li & Zebo Tang, 2020. "A Layered Bidirectional Active Equalization Method for Retired Power Lithium-Ion Batteries for Energy Storage Applications," Energies, MDPI, vol. 13(4), pages 1-15, February.
    20. Konara Mudiyanselage Sandun Y. Konara & Mohan Lal Kolhe & Nils Ulltveit-Moe & Indika A. M. Balapuwaduge, 2023. "Reliability Enhancement of Fast Charging Station under Electric Vehicle Supply Equipment Failures and Repairs," Energies, MDPI, vol. 16(6), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3263-:d:805601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.