IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2071-d235722.html
   My bibliography  Save this article

Control Strategy for Active Hierarchical Equalization Circuits of Series Battery Packs

Author

Listed:
  • Xiaogang Wu

    (School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
    State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China)

  • Zhihao Cui

    (School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China)

  • Xuefeng Li

    (School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China)

  • Jiuyu Du

    (State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China)

  • Ye Liu

    (School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China)

Abstract

Most series battery active equalization circuits implement the equalization first within the series and then between the series, which restricts the equilibrium speed. A hierarchical equalization circuit topology based on the Buck-Boost module is applied in this paper. The equalization is divided into two different equalization processes according to the equilibrium energy flow. The two equalization processes can be performed simultaneously, and the currents in the different hierarchical circuits do not affect each other, thus achieving simultaneous equalizations within the series and between the series. An equalization condition of the terminal voltage is applied and simulations and experiments on charge, discharge, and static equalizations in the four series-connected ternary lithium-ion batteries are performed.

Suggested Citation

  • Xiaogang Wu & Zhihao Cui & Xuefeng Li & Jiuyu Du & Ye Liu, 2019. "Control Strategy for Active Hierarchical Equalization Circuits of Series Battery Packs," Energies, MDPI, vol. 12(11), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2071-:d:235722
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2071/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2071/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shubiao Wang & Longyun Kang & Xiangwei Guo & Zefeng Wang & Ming Liu, 2017. "A Novel Layered Bidirectional Equalizer Based on a Buck-Boost Converter for Series-Connected Battery Strings," Energies, MDPI, vol. 10(7), pages 1-15, July.
    2. Xintian Liu & Zhihao Wan & Yao He & Xinxin Zheng & Guojian Zeng & Jiangfeng Zhang, 2018. "A Unified Control Strategy for Inductor-Based Active Battery Equalisation Schemes," Energies, MDPI, vol. 11(2), pages 1-16, February.
    3. Xiaolin Wang & Ka Wai Eric Cheng & Yat Chi Fong, 2018. "Non-Equal Voltage Cell Balancing for Battery and Super-Capacitor Source Package Management System Using Tapped Inductor Techniques," Energies, MDPI, vol. 11(5), pages 1-12, April.
    4. Diao, Weiping & Xue, Nan & Bhattacharjee, Vikram & Jiang, Jiuchun & Karabasoglu, Orkun & Pecht, Michael, 2018. "Active battery cell equalization based on residual available energy maximization," Applied Energy, Elsevier, vol. 210(C), pages 690-698.
    5. Xiong, Rui & Duan, Yanzhou & Cao, Jiayi & Yu, Quanqing, 2018. "Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle," Applied Energy, Elsevier, vol. 217(C), pages 153-165.
    6. Xintian Liu & Yafei Sun & Yao He & Xinxin Zheng & Guojian Zeng & Jiangfeng Zhang, 2017. "Battery Equalization by Fly-Back Transformers with Inductance, Capacitance and Diode Absorbing Circuits," Energies, MDPI, vol. 10(10), pages 1-16, September.
    7. Wu, Zhou & Ling, Rui & Tang, Ruoli, 2017. "Dynamic battery equalization with energy and time efficiency for electric vehicles," Energy, Elsevier, vol. 141(C), pages 937-948.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengyi Luo & Dongchen Qin & Hongxia Wu & Tingting Wang & Jiangyi Chen, 2022. "Multi-Cell-to-Multi-Cell Battery Equalization in Series Battery Packs Based on Variable Duty Cycle," Energies, MDPI, vol. 15(9), pages 1-21, April.
    2. Jianwen Cao & Bizhong Xia & Jie Zhou, 2021. "An Active Equalization Method for Lithium-ion Batteries Based on Flyback Transformer and Variable Step Size Generalized Predictive Control," Energies, MDPI, vol. 14(1), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shixin Song & Feng Xiao & Silun Peng & Chuanxue Song & Yulong Shao, 2018. "A High-Efficiency Bidirectional Active Balance for Electric Vehicle Battery Packs Based on Model Predictive Control," Energies, MDPI, vol. 11(11), pages 1-24, November.
    2. Yang Yang & Wenchao Zhu & Changjun Xie & Ying Shi & Furong Liu & Weibo Li & Zebo Tang, 2020. "A Layered Bidirectional Active Equalization Method for Retired Power Lithium-Ion Batteries for Energy Storage Applications," Energies, MDPI, vol. 13(4), pages 1-15, February.
    3. Turksoy, Arzu & Teke, Ahmet & Alkaya, Alkan, 2020. "A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Li, Penghua & Liu, Jianfei & Deng, Zhongwei & Yang, Yalian & Lin, Xianke & Couture, Jonathan & Hu, Xiaosong, 2022. "Increasing energy utilization of battery energy storage via active multivariable fusion-driven balancing," Energy, Elsevier, vol. 243(C).
    5. Lv, Jie & Lin, Shili & Song, Wenji & Chen, Mingbiao & Feng, Ziping & Li, Yongliang & Ding, Yulong, 2019. "Performance of LiFePO4 batteries in parallel based on connection topology," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Shun-Chung Wang & Chun-Yu Liu & Yi-Hua Liu, 2018. "A Fast Equalizer with Adaptive Balancing Current Control," Energies, MDPI, vol. 11(5), pages 1-15, April.
    7. Yat Chi Fong & Ka Wai Eric Cheng & S. Raghu Raman & Xiaolin Wang, 2018. "Multi-Port Zero-Current Switching Switched-Capacitor Converters for Battery Management Applications," Energies, MDPI, vol. 11(8), pages 1-17, July.
    8. Chang, Chun & Wu, Yutong & Jiang, Jiuchun & Jiang, Yan & Tian, Aina & Li, Taiyu & Gao, Yang, 2022. "Prognostics of the state of health for lithium-ion battery packs in energy storage applications," Energy, Elsevier, vol. 239(PB).
    9. Bhattacharjee, Vikram & Khan, Irfan, 2018. "A non-linear convex cost model for economic dispatch in microgrids," Applied Energy, Elsevier, vol. 222(C), pages 637-648.
    10. Zhang, Wei & Wang, Jixin & Liu, Yong & Gao, Guangzong & Liang, Siwen & Ma, Hongfeng, 2020. "Reinforcement learning-based intelligent energy management architecture for hybrid construction machinery," Applied Energy, Elsevier, vol. 275(C).
    11. Yao He & Changchang Miao & Ji Wu & Xinxin Zheng & Xintian Liu & Xingtao Liu & Feng Han, 2021. "Research on the Power Distribution Method for Hybrid Power System in the Fuel Cell Vehicle," Energies, MDPI, vol. 14(3), pages 1-15, January.
    12. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    13. Yang, Jufeng & Huang, Wenxin & Xia, Bing & Mi, Chris, 2019. "The improved open-circuit voltage characterization test using active polarization voltage reduction method," Applied Energy, Elsevier, vol. 237(C), pages 682-694.
    14. Alfredo Alvarez-Diazcomas & Adyr A. Estévez-Bén & Juvenal Rodríguez-Reséndiz & Miguel-Angel Martínez-Prado & Roberto V. Carrillo-Serrano & Suresh Thenozhi, 2020. "A Review of Battery Equalizer Circuits for Electric Vehicle Applications," Energies, MDPI, vol. 13(21), pages 1-29, October.
    15. Giaouris, Damian & Papadopoulos, Athanasios I. & Patsios, Charalampos & Walker, Sara & Ziogou, Chrysovalantou & Taylor, Phil & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2018. "A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response," Applied Energy, Elsevier, vol. 226(C), pages 546-559.
    16. Chusheng Lu & Longyun Kang & Xuan Luo & Jinqing Linghu & Hongye Lin, 2019. "A Novel Lithium Battery Equalization Circuit with Any Number of Inductors," Energies, MDPI, vol. 12(24), pages 1-14, December.
    17. Wojciech Kurpiel & Przemysław Deja & Bartosz Polnik & Marcin Skóra & Bogdan Miedziński & Marcin Habrych & Grzegorz Debita & Monika Zamłyńska & Przemysław Falkowski-Gilski, 2021. "Performance of Passive and Active Balancing Systems of Lithium Batteries in Onerous Mine Environment," Energies, MDPI, vol. 14(22), pages 1-15, November.
    18. Fan, Feilong & Huang, Wentao & Tai, Nengling & Zheng, Xiaodong & Hu, Yan & Ma, Zhoujun, 2018. "A conditional depreciation balancing strategy for the equitable operation of extended hybrid energy storage systems," Applied Energy, Elsevier, vol. 228(C), pages 1937-1952.
    19. An, Fulai & Zhang, Weige & Sun, Bingxiang & Jiang, Jiuchun & Fan, Xinyuan, 2023. "A novel battery pack inconsistency model and influence degree analysis of inconsistency on output energy," Energy, Elsevier, vol. 271(C).
    20. Chein-Chung Sun & Chun-Hung Chou & Yu-Liang Lin & Yu-Hua Huang, 2022. "A Cost-Effective Passive/Active Hybrid Equalizer Circuit Design," Energies, MDPI, vol. 15(6), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2071-:d:235722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.