IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v93y2015ip2p2483-2496.html
   My bibliography  Save this article

Hydrodynamic performance prediction of a tidal current turbine operating in non-uniform inflow conditions

Author

Listed:
  • O'Rourke, Fergal
  • Boyle, Fergal
  • Reynolds, Anthony
  • Kennedy, David M.

Abstract

A detailed understanding of the hydrodynamics of a tidal current turbine is paramount to the further development and adaptation of tidal current energy. Hydrodynamic modelling of such systems assists with reducing the cost of energy through accurate performance prediction enabling design refinement. Blade element momentum theory offers an efficient modelling technique to compute the hydrodynamic performance of a tidal current turbine. In this work, a corrected mathematical model, based on unsteady blade element momentum theory, for the application of tidal current turbines is presented. The mathematical model is compared with experimental data found in the literature, showing excellent agreement. Particular attention is given to the hydrodynamic performance of a tidal current turbine subjected to tidal current shear and yaw misalignment. The results of this study indicate that tidal current shear and yaw misalignment have a significant impact on the hydrodynamic performance of a tidal current turbine. Importantly, the hydrodynamic model presented can be used as an efficient design and optimisation tool for tidal current turbine blades. Moreover, the mathematical model presented can be combined with an economic model to assess the techno-economic performance of a tidal current turbine operating in actual site conditions.

Suggested Citation

  • O'Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony & Kennedy, David M., 2015. "Hydrodynamic performance prediction of a tidal current turbine operating in non-uniform inflow conditions," Energy, Elsevier, vol. 93(P2), pages 2483-2496.
  • Handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:2483-2496
    DOI: 10.1016/j.energy.2015.10.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215014462
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.10.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Batten, W.M.J. & Bahaj, A.S. & Molland, A.F. & Chaplin, J.R., 2008. "The prediction of the hydrodynamic performance of marine current turbines," Renewable Energy, Elsevier, vol. 33(5), pages 1085-1096.
    2. Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
    3. Dai, J.C. & Hu, Y.P. & Liu, D.S. & Long, X., 2011. "Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model," Renewable Energy, Elsevier, vol. 36(3), pages 1095-1104.
    4. Lanzafame, R. & Messina, M., 2007. "Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory," Renewable Energy, Elsevier, vol. 32(14), pages 2291-2305.
    5. Karthikeyan, N. & Kalidasa Murugavel, K. & Arun Kumar, S. & Rajakumar, S., 2015. "Review of aerodynamic developments on small horizontal axis wind turbine blade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 801-822.
    6. Bahaj, A.S. & Batten, W.M.J. & McCann, G., 2007. "Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines," Renewable Energy, Elsevier, vol. 32(15), pages 2479-2490.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Can Zhang & Jisheng Zhang & Athanasios Angeloudis & Yudi Zhou & Stephan C. Kramer & Matthew D. Piggott, 2023. "Physical Modelling of Tidal Stream Turbine Wake Structures under Yaw Conditions," Energies, MDPI, vol. 16(4), pages 1-21, February.
    2. Zhang, Aiming & Liu, Sen & Ma, Yong & Hu, Chao & Li, Zhengyu, 2022. "Field tests on model efficiency of twin vertical axis helical hydrokinetic turbines," Energy, Elsevier, vol. 247(C).
    3. Liu, Yabin & Tan, Lei, 2020. "Method of T shape tip on energy improvement of a hydrofoil with tip clearance in tidal energy," Renewable Energy, Elsevier, vol. 149(C), pages 42-54.
    4. Finnegan, William & Fagan, Edward & Flanagan, Tomas & Doyle, Adrian & Goggins, Jamie, 2020. "Operational fatigue loading on tidal turbine blades using computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 430-440.
    5. Vinod, Ashwin & Han, Cong & Banerjee, Arindam, 2021. "Tidal turbine performance and near-wake characteristics in a sheared turbulent inflow," Renewable Energy, Elsevier, vol. 175(C), pages 840-852.
    6. Abuan, Binoe E. & Howell, Robert J., 2019. "The performance and hydrodynamics in unsteady flow of a horizontal axis tidal turbine," Renewable Energy, Elsevier, vol. 133(C), pages 1338-1351.
    7. Fan, YaJun & Mu, AnLe & Ma, Tao, 2016. "Modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator," Energy, Elsevier, vol. 112(C), pages 188-199.
    8. Liu, Yabin & Tan, Lei, 2020. "Influence of C groove on suppressing vortex and cavitation for a NACA0009 hydrofoil with tip clearance in tidal energy," Renewable Energy, Elsevier, vol. 148(C), pages 907-922.
    9. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    10. Dong, Yongjun & Yan, Yuting & Xu, Shiming & Zhang, Xinyu & Zhang, Xiao & Chen, Jianmei & Guo, Jingfu, 2023. "An adaptive yaw method of horizontal-axis tidal stream turbines for bidirectional energy capture," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jian & Wang, Longyan & Luo, Zhaohui & Wang, Zilu & Zhang, Bowen & Yuan, Jianping & Tan, Andy C.C., 2024. "Deep learning enhanced fluid-structure interaction analysis for composite tidal turbine blades," Energy, Elsevier, vol. 296(C).
    2. Xu, Jian & Wang, Longyan & Yuan, Jianping & Shi, Jiali & Wang, Zilu & Zhang, Bowen & Luo, Zhaohui & Tan, Andy C.C., 2023. "A cost-effective CNN-BEM coupling framework for design optimization of horizontal axis tidal turbine blades," Energy, Elsevier, vol. 282(C).
    3. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    4. Modali, Pranav K. & Vinod, Ashwin & Banerjee, Arindam, 2021. "Towards a better understanding of yawed turbine wake for efficient wake steering in tidal arrays," Renewable Energy, Elsevier, vol. 177(C), pages 482-494.
    5. Abutunis, Abdulaziz & Hussein, Rafid & Chandrashekhara, K., 2019. "A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application," Renewable Energy, Elsevier, vol. 136(C), pages 1281-1293.
    6. Xu, Jian & Wang, Longyan & Yuan, Jianping & Luo, Zhaohui & Wang, Zilu & Zhang, Bowen & Tan, Andy C.C., 2024. "DLFSI: A deep learning static fluid-structure interaction model for hydrodynamic-structural optimization of composite tidal turbine blade," Renewable Energy, Elsevier, vol. 224(C).
    7. Luznik, Luksa & Flack, Karen A. & Lust, Ethan E. & Taylor, Katharin, 2013. "The effect of surface waves on the performance characteristics of a model tidal turbine," Renewable Energy, Elsevier, vol. 58(C), pages 108-114.
    8. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    9. Wang, Wen-Quan & Yin, Rui & Yan, Yan, 2019. "Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine," Renewable Energy, Elsevier, vol. 133(C), pages 91-102.
    10. Huang, B. & Kanemoto, T., 2015. "Multi-objective numerical optimization of the front blade pitch angle distribution in a counter-rotating type horizontal-axis tidal turbine," Renewable Energy, Elsevier, vol. 81(C), pages 837-844.
    11. Walker, Jessica M. & Flack, Karen A. & Lust, Ethan E. & Schultz, Michael P. & Luznik, Luksa, 2014. "Experimental and numerical studies of blade roughness and fouling on marine current turbine performance," Renewable Energy, Elsevier, vol. 66(C), pages 257-267.
    12. Li, Wei & Zhou, Hongbin & Liu, Hongwei & Lin, Yonggang & Xu, Quankun, 2016. "Review on the blade design technologies of tidal current turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 414-422.
    13. Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.
    14. Pinon, Grégory & Mycek, Paul & Germain, Grégory & Rivoalen, Elie, 2012. "Numerical simulation of the wake of marine current turbines with a particle method," Renewable Energy, Elsevier, vol. 46(C), pages 111-126.
    15. Kennedy, Ciaran R. & Jaksic, Vesna & Leen, Sean B. & Brádaigh, Conchúr M.Ó., 2018. "Fatigue life of pitch- and stall-regulated composite tidal turbine blades," Renewable Energy, Elsevier, vol. 121(C), pages 688-699.
    16. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2014. "Marine current energy resource assessment and design of a marine current turbine for Fiji," Renewable Energy, Elsevier, vol. 65(C), pages 14-22.
    17. Ikeda, Teruaki & Tanaka, Hiroto & Yoshimura, Ryosuke & Noda, Ryusuke & Fujii, Takeo & Liu, Hao, 2018. "A robust biomimetic blade design for micro wind turbines," Renewable Energy, Elsevier, vol. 125(C), pages 155-165.
    18. Sheng, Qihu & Jing, Fengmei & Zhang, Liang & Zhou, Nianfu & Wang, Shuqi & Zhang, Zhiyang, 2016. "Study of the hydrodynamic derivatives of vertical-axis tidal current turbines in surge motion," Renewable Energy, Elsevier, vol. 96(PA), pages 366-376.
    19. Ilias Gavriilidis & Yuner Huang, 2021. "Finite Element Analysis of Tidal Turbine Blade Subjected to Impact Loads from Sea Animals," Energies, MDPI, vol. 14(21), pages 1-20, November.
    20. Dallatu Abbas Umar & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Ammar Ahmed Alkahtani & Talal Yusaf, 2022. "Design and Optimization of a Small-Scale Horizontal Axis Wind Turbine Blade for Energy Harvesting at Low Wind Profile Areas," Energies, MDPI, vol. 15(9), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:2483-2496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.