IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2374-d168656.html
   My bibliography  Save this article

Dimensional Analysis of Power Prediction of a Real-Scale Wind Turbine Based on Wind-Tunnel Torque Measurement of Small-Scaled Models

Author

Listed:
  • Sutrisno

    (Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Sigit Iswahyudi

    (Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
    Department of Mechanical Engineering, Universitas Tidar, Magelang 56116, Indonesia)

  • Setyawan Bekti Wibowo

    (Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
    Department of Mechanical, Vocational College, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

Abstract

A preliminary study of a horizontal-axis wind turbine (HAWT) design is carried out using a wind tunnel to obtain its aerodynamic characteristics. Utilization of data from the study to develop large-scale wind turbines requires further study. This paper aims to discuss the use of wind turbine data obtained the wind-tunnel measurements to estimate the characteristics of wind turbines that have field size. One should measure the torque of two small-scale turbines inside the wind tunnel. The first small-scale turbine has a radius of 0.14 m, and the radius of the second small turbine is 0.19 m. Torque measurement results from both turbines were analyzed using the Buckingham π theorem to obtain a correlation between torsion and diameter variations. The obtained correlation equation was used to estimate the field measurement of turbine power with a radius of 1.2 m. The resulting correlation equation can be applied to approximate the energy generated by the turbine using the size of the field well in the operating area and the tip-speed ratio (λ) of the turbine design.

Suggested Citation

  • Sutrisno & Sigit Iswahyudi & Setyawan Bekti Wibowo, 2018. "Dimensional Analysis of Power Prediction of a Real-Scale Wind Turbine Based on Wind-Tunnel Torque Measurement of Small-Scaled Models," Energies, MDPI, vol. 11(9), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2374-:d:168656
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2374/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2374/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, Ronit K. & Ahmed, M. Rafiuddin, 2013. "Blade design and performance testing of a small wind turbine rotor for low wind speed applications," Renewable Energy, Elsevier, vol. 50(C), pages 812-819.
    2. Peter J. Schubel & Richard J. Crossley, 2012. "Wind Turbine Blade Design," Energies, MDPI, vol. 5(9), pages 1-25, September.
    3. Hu, Danmei & Hua, Ouyang & Du, Zhaohui, 2006. "A study on stall-delay for horizontal axis wind turbine," Renewable Energy, Elsevier, vol. 31(6), pages 821-836.
    4. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    5. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    6. Yu, Guohua & Shen, Xin & Zhu, Xiaocheng & Du, Zhaohui, 2011. "An insight into the separate flow and stall delay for HAWT," Renewable Energy, Elsevier, vol. 36(1), pages 69-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haojun Tang & Kit-Ming Lam & Kei-Man Shum & Yongle Li, 2019. "Wake Effect of a Horizontal Axis Wind Turbine on the Performance of a Downstream Turbine," Energies, MDPI, vol. 12(12), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dallatu Abbas Umar & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Ammar Ahmed Alkahtani & Talal Yusaf, 2022. "Design and Optimization of a Small-Scale Horizontal Axis Wind Turbine Blade for Energy Harvesting at Low Wind Profile Areas," Energies, MDPI, vol. 15(9), pages 1-22, April.
    2. Elena Sosnina & Andrey Dar’enkov & Andrey Kurkin & Ivan Lipuzhin & Andrey Mamonov, 2022. "Review of Efficiency Improvement Technologies of Wind Diesel Hybrid Systems for Decreasing Fuel Consumption," Energies, MDPI, vol. 16(1), pages 1-38, December.
    3. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    4. Elgammi, Moutaz & Sant, Tonio & Alshaikh, Moftah, 2020. "Predicting the stochastic aerodynamic loads on blades of two yawed downwind hawts in uncontrolled conditions using a bem algorithm," Renewable Energy, Elsevier, vol. 146(C), pages 371-383.
    5. Liu, Xiong & Lu, Cheng & Liang, Shi & Godbole, Ajit & Chen, Yan, 2017. "Vibration-induced aerodynamic loads on large horizontal axis wind turbine blades," Applied Energy, Elsevier, vol. 185(P2), pages 1109-1119.
    6. Shahid Aziz & Abdullah Khan & Imran Shah & Tariq Amin Khan & Yasir Ali & Muhammad Umer Sohail & Badar Rashid & Dong Won Jung, 2022. "Computational Fluid Dynamics and Experimental Analysis of a Wind Turbine Blade’s Frontal Section with and without Arrays of Dimpled Structures," Energies, MDPI, vol. 15(19), pages 1-15, September.
    7. Li, Qing’an & Xu, Jianzhong & Kamada, Yasunari & Takao, Maeda & Nishimura, Shogo & Wu, Guangxing & Cai, Chang, 2020. "Experimental investigations of airfoil surface flow of a horizontal axis wind turbine with LDV measurements," Energy, Elsevier, vol. 191(C).
    8. Momeni, Farhang & Sabzpoushan, Seyedali & Valizadeh, Reza & Morad, Mohammad Reza & Liu, Xun & Ni, Jun, 2019. "Plant leaf-mimetic smart wind turbine blades by 4D printing," Renewable Energy, Elsevier, vol. 130(C), pages 329-351.
    9. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    10. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    11. Yin, Minghui & Yang, Zhiqiang & Xu, Yan & Liu, Jiankun & Zhou, Lianjun & Zou, Yun, 2018. "Aerodynamic optimization for variable-speed wind turbines based on wind energy capture efficiency," Applied Energy, Elsevier, vol. 221(C), pages 508-521.
    12. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Nishida, Yusuke, 2016. "Visualization of the flow field and aerodynamic force on a Horizontal Axis Wind Turbine in turbulent inflows," Energy, Elsevier, vol. 111(C), pages 57-67.
    13. Alfredo Alcayde & Quetzalcoatl Hernandez-Escobedo & David Muñoz-Rodríguez & Alberto-Jesus Perea-Moreno, 2022. "Worldwide Research Trends on Optimizing Wind Turbine Efficiency," Energies, MDPI, vol. 15(18), pages 1-7, September.
    14. Nikolić, Vlastimir & Sajjadi, Shahin & Petković, Dalibor & Shamshirband, Shahaboddin & Ćojbašić, Žarko & Por, Lip Yee, 2016. "Design and state of art of innovative wind turbine systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 258-265.
    15. Sutrisno . & Deendarlianto . & Indarto . & Sigit Iswahyudi & Muhammad Bramantya & Setyawan Wibowo, 2017. "Performances and Stall Delays of Three Dimensional Wind Turbine Blade Plate-Models with Helicopter-Like Propeller Blade Tips," Modern Applied Science, Canadian Center of Science and Education, vol. 11(10), pages 189-189, October.
    16. Li, Qing'an & Xu, Jianzhong & Maeda, Takao & Kamada, Yasunari & Nishimura, Shogo & Wu, Guangxing & Cai, Chang, 2019. "Laser Doppler Velocimetry (LDV) measurements of airfoil surface flow on a Horizontal Axis Wind Turbine in boundary layer," Energy, Elsevier, vol. 183(C), pages 341-357.
    17. Meng, Hang & Lien, Fue-Sang & Yee, Eugene & Shen, Jingfang, 2020. "Modelling of anisotropic beam for rotating composite wind turbine blade by using finite-difference time-domain (FDTD) method," Renewable Energy, Elsevier, vol. 162(C), pages 2361-2379.
    18. Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Wolszczak, Piotr & Yurchenko, Daniil, 2022. "Nonlinear dynamics of a new energy harvesting system with quasi-zero stiffness," Applied Energy, Elsevier, vol. 307(C).
    19. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    20. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2374-:d:168656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.