IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2771-d790439.html
   My bibliography  Save this article

A Comprehensive Analysis of the Risks Associated with the Determination of Biofuels’ Calorific Value by Bomb Calorimetry

Author

Listed:
  • Moaaz Shehab

    (Physikalisch Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
    Sustainable Process Technology, Twente University, Drienerlolaan 5, 7522 NB Enschede, The Netherlands)

  • Camelia Stratulat

    (Biroul Roman de Metrologie, Vitan Barzesti 11, 042122 Bucharest, Romania)

  • Kemal Ozcan

    (TÜBITAK UME National Metrology Institute, Gebze Barış Mah. Zeki Acar Cad. No:1, 41470 Kocaeli, Turkey)

  • Aylin Boztepe

    (TÜBITAK UME National Metrology Institute, Gebze Barış Mah. Zeki Acar Cad. No:1, 41470 Kocaeli, Turkey)

  • Alper Isleyen

    (TÜBITAK UME National Metrology Institute, Gebze Barış Mah. Zeki Acar Cad. No:1, 41470 Kocaeli, Turkey)

  • Edwin Zondervan

    (Sustainable Process Technology, Twente University, Drienerlolaan 5, 7522 NB Enschede, The Netherlands)

  • Kai Moshammer

    (Physikalisch Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany)

Abstract

Two of the most commonly used solid biomass sources for fuel are wood chips and wood pellets. The calorific value and the moisture content of those biofuels determine the efficiency of the CHP and the biorefinery plants. Therefore, with the increased shift towards a biobased economy, the biomass cost and its physical properties must be precisely determined. Most of the current standards are lacking and provide neither enough details about the issues caused by the biomass heterogeneity nor with the variation in experimental practice. Phenomena such as data scattering, poor repeatability and wide uncertainty, are mostly observed during the measurements of the calorific value and the moisture content. To overcome such issues, an interlaboratory comparison between three national metrology institutes using bomb calorimetry has taken place. The comparison helped to identify the root causes behind the poor reproducibility of the wood samples. Factors such as the equilibrium moisture content of the biomass, the pellet mass, the applied pressure to form the pellet, the handling techniques and the determination errors are highlighted and analyzed. The final results paved the way to provide an enhanced detailed experimental practice where the repeatability and reproducibility have been strongly improved. Moreover, the detailed uncertainty sources and calculations are presented. It has been found that by fulfilling the recommended approach the measurement repeatability improved by up to 50–80%, while the final uncertainty improved by 10–30%. This enhancement leads to a maximum relative expanded uncertainty of around ±1% (coverage factor of k = 2 and a confidence level of 95%).

Suggested Citation

  • Moaaz Shehab & Camelia Stratulat & Kemal Ozcan & Aylin Boztepe & Alper Isleyen & Edwin Zondervan & Kai Moshammer, 2022. "A Comprehensive Analysis of the Risks Associated with the Determination of Biofuels’ Calorific Value by Bomb Calorimetry," Energies, MDPI, vol. 15(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2771-:d:790439
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2771/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gianluca Cavalaglio & Franco Cotana & Andrea Nicolini & Valentina Coccia & Alessandro Petrozzi & Alessandro Formica & Alessandro Bertini, 2020. "Characterization of Various Biomass Feedstock Suitable for Small-Scale Energy Plants as Preliminary Activity of Biocheaper Project," Sustainability, MDPI, vol. 12(16), pages 1-10, August.
    2. Marcin Jewiarz & Marek Wróbel & Krzysztof Mudryk & Szymon Szufa, 2020. "Impact of the Drying Temperature and Grinding Technique on Biomass Grindability," Energies, MDPI, vol. 13(13), pages 1-22, July.
    3. Nerijus Pedišius & Marius Praspaliauskas & Justinas Pedišius & Eugenija Farida Dzenajavičienė, 2021. "Analysis of Wood Chip Characteristics for Energy Production in Lithuania," Energies, MDPI, vol. 14(13), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moaaz Shehab & Kai Moshammer & Meik Franke & Edwin Zondervan, 2023. "Analysis of the Potential of Meeting the EU’s Sustainable Aviation Fuel Targets in 2030 and 2050," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    2. Dudziec, Paweł & Stachowicz, Paweł & Stolarski, Mariusz J., 2023. "Diversity of properties of sawmill residues used as feedstock for energy generation," Renewable Energy, Elsevier, vol. 202(C), pages 822-833.
    3. Camelia Stratulat & Raluca Elena Ginghina & Adriana Elena Bratu & Alper Isleyen & Murat Tunc & Katarina Hafner-Vuk & Anne Mette Frey & Henrik Kjeldsen & Jochen Vogl, 2023. "Development- and Validation-Improved Metrological Methods for the Determination of Inorganic Impurities and Ash Content from Biofuels," Energies, MDPI, vol. 16(13), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sooraj Kumar & Suhail Ahmed Soomro & Khanji Harijan & Mohammad Aslam Uqaili & Laveet Kumar, 2023. "Advancements of Biochar-Based Catalyst for Improved Production of Biodiesel: A Comprehensive Review," Energies, MDPI, vol. 16(2), pages 1-20, January.
    2. Stolarski, Mariusz J. & Dudziec, Paweł & Krzyżaniak, Michał & Graban, Łukasz & Lajszner, Waldemar & Olba–Zięty, Ewelina, 2024. "How do key for the bioenergy industry properties of baled biomass change over two years of storage?," Renewable Energy, Elsevier, vol. 224(C).
    3. Waheed A. Rasaq & Mateusz Golonka & Miklas Scholz & Andrzej Białowiec, 2021. "Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review," Energies, MDPI, vol. 14(17), pages 1-20, August.
    4. Živilė Černiauskienė & Algirdas Jonas Raila & Egidijus Zvicevičius & Vita Tilvikienė & Zofija Jankauskienė, 2021. "Comparative Research of Thermochemical Conversion Properties of Coarse-Energy Crops," Energies, MDPI, vol. 14(19), pages 1-15, October.
    5. Katarzyna Ławińska & Szymon Szufa & Andrzej Obraniak & Tomasz Olejnik & Robert Siuda & Jerzy Kwiatek & Dominika Ogrodowczyk, 2020. "Disc Granulation Process of Carbonation Lime Mud as a Method of Post-Production Waste Management," Energies, MDPI, vol. 13(13), pages 1-14, July.
    6. Luigi Pari & Vincenzo Alfano & Walter Stefanoni & Francesco Latterini & Federico Liuzzi & Isabella De Bari & Vito Valerio & Anna Ciancolini, 2021. "Inulin Content in Chipped and Whole Roots of Cardoon after Six Months Storage under Natural Conditions," Sustainability, MDPI, vol. 13(7), pages 1-11, April.
    7. Mariusz Jerzy Stolarski & Michał Krzyżaniak & Ewelina Olba-Zięty & Jakub Stolarski, 2023. "Changes in Commercial Dendromass Properties Depending on Type and Acquisition Time," Energies, MDPI, vol. 16(24), pages 1-20, December.
    8. Rahman, Abdur & Marufuzzaman, Mohammad & Street, Jason & Wooten, James & Gude, Veera Gnaneswar & Buchanan, Randy & Wang, Haifeng, 2024. "A comprehensive review on wood chip moisture content assessment and prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Oleg Kucher & Taras Hutsol & Szymon Glowacki & Iryna Andreitseva & Anatolii Dibrova & Andrii Muzychenko & Anna Szeląg-Sikora & Agnieszka Szparaga & Sławomir Kocira, 2022. "Energy Potential of Biogas Production in Ukraine," Energies, MDPI, vol. 15(5), pages 1-22, February.
    10. Zdzislawa Romanowska-Duda & Szymon Szufa & Mieczysław Grzesik & Krzysztof Piotrowski & Regina Janas, 2021. "The Promotive Effect of Cyanobacteria and Chlorella sp. Foliar Biofertilization on Growth and Metabolic Activities of Willow ( Salix viminalis L.) Plants as Feedstock Production, Solid Biofuel and Bio," Energies, MDPI, vol. 14(17), pages 1-21, August.
    11. Yılmaz, Hasan & Çanakcı, Murad & Topakcı, Mehmet & Karayel, Davut & Yiğit, Mete & Ortaçeşme, Derya, 2023. "In-situ pelletization of campus biomass residues: Case study for Akdeniz University," Renewable Energy, Elsevier, vol. 212(C), pages 972-983.
    12. Mariusz Jerzy Stolarski & Natalia Wojciechowska & Mateusz Seliwiak & Tomasz Krzysztof Dobrzański, 2024. "Properties of Forest Tree Branches as an Energy Feedstock in North-Eastern Poland," Energies, MDPI, vol. 17(8), pages 1-18, April.
    13. Spale, Jan & Vodicka, Vaclav & Zeleny, Zbynek & Pavlicko, Jan & Mascuch, Jakub & Novotny, Vaclav, 2022. "Scaling up a woodchip-fired containerized CHP ORC unit toward commercialization," Renewable Energy, Elsevier, vol. 199(C), pages 1226-1236.
    14. Weronika Kruszelnicka & Jakub Hlosta & Jan Diviš & Łukasz Gierz, 2021. "Study of the Relationships between Multi-Hole, Multi-Disc Mill Performance Parameters and Comminution Indicators," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    15. Robert Adamski & Dorota Siuta & Bożena Kukfisz & Michał Frydrysiak & Mirosława Prochoń, 2021. "Integration of Safety Aspects in Modeling of Superheated Steam Flash Drying of Tobacco," Energies, MDPI, vol. 14(18), pages 1-22, September.
    16. Krzysztof Mudryk & Marcin Jewiarz & Marek Wróbel & Marcin Niemiec & Arkadiusz Dyjakon, 2021. "Evaluation of Urban Tree Leaf Biomass-Potential, Physico-Mechanical and Chemical Parameters of Raw Material and Solid Biofuel," Energies, MDPI, vol. 14(4), pages 1-14, February.
    17. Tomasz Hardy & Amit Arora & Halina Pawlak-Kruczek & Wojciech Rafajłowicz & Jerzy Wietrzych & Łukasz Niedźwiecki & Vishwajeet & Krzysztof Mościcki, 2021. "Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review," Energies, MDPI, vol. 14(21), pages 1-15, November.
    18. Tomasz Noszczyk & Arkadiusz Dyjakon & Jacek A. Koziel, 2021. "Kinetic Parameters of Nut Shells Pyrolysis," Energies, MDPI, vol. 14(3), pages 1-22, January.
    19. Sławomir Obidziński & Magdalena Joka Yildiz & Sebastian Dąbrowski & Jan Jasiński & Wojciech Czekała, 2022. "Application of Post-Flotation Dairy Sludge in the Production of Wood Pellets: Pelletization and Combustion Analysis," Energies, MDPI, vol. 15(24), pages 1-19, December.
    20. Mariusz Jerzy Stolarski & Paweł Dudziec & Ewelina Olba-Zięty & Paweł Stachowicz & Michał Krzyżaniak, 2022. "Forest Dendromass as Energy Feedstock: Diversity of Properties and Composition Depending on Systematic Genus and Organ," Energies, MDPI, vol. 15(4), pages 1-60, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2771-:d:790439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.