IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p7973-d1296776.html
   My bibliography  Save this article

Changes in Commercial Dendromass Properties Depending on Type and Acquisition Time

Author

Listed:
  • Mariusz Jerzy Stolarski

    (Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-724 Olsztyn, Poland
    Centre for Bioeconomy and Renewable Energies, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10–719 Olsztyn, Poland)

  • Michał Krzyżaniak

    (Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-724 Olsztyn, Poland
    Centre for Bioeconomy and Renewable Energies, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10–719 Olsztyn, Poland)

  • Ewelina Olba-Zięty

    (Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-724 Olsztyn, Poland
    Centre for Bioeconomy and Renewable Energies, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10–719 Olsztyn, Poland)

  • Jakub Stolarski

    (Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-724 Olsztyn, Poland)

Abstract

Forest dendromass is still the major raw material in the production of solid biofuels, which are still the most important feedstock in the structure of primary energy production from renewable energy sources. Because of the high species and type diversity of production residues generated at wood processing sites, as well as at logging sites, the quality of commercial solid biomass produced there has to be evaluated. The aim of this study was to assess the thermophysical characteristics and the elemental composition of ten types of commercial solid biofuels (pinewood sawdust; energy chips I, II, and III; veneer sheets; shavings; birch bark; pine bark; pulp chips; and veneer chips), depending on their acquisition time (August, October, December, February, April, and June). Pulp chips had the significantly lowest moisture content (mean 26.92%), ash content (mean 0.39% DM—dry matter), nitrogen (N) content (mean 0.11% DM), and sulfur (S) content (mean 0.011% DM) and the highest carbon (C) content (mean 56.09% DM), hydrogen (H) content (6.40% DM), and lower heating value (LHV) (mean 13.61 GJ Mg −1 ). The three types of energy chips (I, II, and III) had good energy parameters, especially regarding their satisfactory LHV and ash, S, and N content. On the other hand, pine and birch bark had the worst ash, S, and N contents, although they had beneficial higher heating values (HHVs) and C contents. Solid biofuels acquired in summer (June) had the lowest levels of moisture and ash and the highest LHV. The highest moisture content and the lowest LHV were found in winter (December).

Suggested Citation

  • Mariusz Jerzy Stolarski & Michał Krzyżaniak & Ewelina Olba-Zięty & Jakub Stolarski, 2023. "Changes in Commercial Dendromass Properties Depending on Type and Acquisition Time," Energies, MDPI, vol. 16(24), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:7973-:d:1296776
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/7973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/7973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Garikai T. Marangwanda & Daniel M. Madyira & Patrick G. Ndungu & Chido H. Chihobo, 2021. "Combustion Characterisation of Bituminous Coal and Pinus Sawdust Blends by Use of Thermo-Gravimetric Analysis," Energies, MDPI, vol. 14(22), pages 1-19, November.
    2. Mariusz Jerzy Stolarski & Paweł Stachowicz & Waldemar Sieniawski & Michał Krzyżaniak & Ewelina Olba-Zięty, 2021. "Quality and Delivery Costs of Wood Chips by Railway vs. Road Transport," Energies, MDPI, vol. 14(21), pages 1-17, October.
    3. Esperanza Monedero & Juan José Hernández & Rocío Collado, 2017. "Combustion-Related Properties of Poplar, Willow and Black Locust to be used as Fuels in Power Plants," Energies, MDPI, vol. 10(7), pages 1-11, July.
    4. Nerijus Pedišius & Marius Praspaliauskas & Justinas Pedišius & Eugenija Farida Dzenajavičienė, 2021. "Analysis of Wood Chip Characteristics for Energy Production in Lithuania," Energies, MDPI, vol. 14(13), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz Jerzy Stolarski & Natalia Wojciechowska & Mateusz Seliwiak & Tomasz Krzysztof Dobrzański, 2024. "Properties of Forest Tree Branches as an Energy Feedstock in North-Eastern Poland," Energies, MDPI, vol. 17(8), pages 1-18, April.
    2. Dudziec, Paweł & Stachowicz, Paweł & Stolarski, Mariusz J., 2023. "Diversity of properties of sawmill residues used as feedstock for energy generation," Renewable Energy, Elsevier, vol. 202(C), pages 822-833.
    3. Jakub Stolarski & Sławomir Wierzbicki & Szymon Nitkiewicz & Mariusz Jerzy Stolarski, 2023. "Wood Chip Production Efficiency Depending on Chipper Type," Energies, MDPI, vol. 16(13), pages 1-15, June.
    4. Lukáš Rečka & Milan Ščasný & Dali Tsintskiladze Laxton, 2023. "The Role of Biomass in Decarbonisation Efforts: Spatially Enriched Energy System Optimisation Modelling," Energies, MDPI, vol. 16(21), pages 1-18, October.
    5. Stolarski, Mariusz J. & Dudziec, Paweł & Krzyżaniak, Michał & Graban, Łukasz & Lajszner, Waldemar & Olba–Zięty, Ewelina, 2024. "How do key for the bioenergy industry properties of baled biomass change over two years of storage?," Renewable Energy, Elsevier, vol. 224(C).
    6. José Antonio Soriano & Reyes García-Contreras & Antonio José Carpio de Los Pinos, 2021. "Study of the Thermochemical Properties of Lignocellulosic Biomass from Energy Crops," Energies, MDPI, vol. 14(13), pages 1-18, June.
    7. Paweł Stachowicz & Mariusz Jerzy Stolarski, 2022. "Thermophysical Properties and Elemental Composition of Black Locust, Poplar and Willow Biomass," Energies, MDPI, vol. 16(1), pages 1-16, December.
    8. Živilė Černiauskienė & Algirdas Jonas Raila & Egidijus Zvicevičius & Vita Tilvikienė & Zofija Jankauskienė, 2021. "Comparative Research of Thermochemical Conversion Properties of Coarse-Energy Crops," Energies, MDPI, vol. 14(19), pages 1-15, October.
    9. Jadwiga Wyszkowska & Agata Borowik & Magdalena Zaborowska & Jan Kucharski, 2023. "Calorific Value of Zea mays Biomass Derived from Soil Contaminated with Chromium (VI) Disrupting the Soil’s Biochemical Properties," Energies, MDPI, vol. 16(9), pages 1-19, April.
    10. Maginot Ngangyo Heya & Rahim Foroughbakhch Pournavab & Artemio Carrillo Parra & Volker Zelinski & Lidia Rosaura Salas Cruz, 2019. "Elemental Composition and Flue Gas Emissions of Different Components from Five Semi-Arid Woody Species in Pyrolysed and Non-Pyrolysed Material," Sustainability, MDPI, vol. 11(5), pages 1-12, February.
    11. Alicja Kicińska & Grzegorz Caba, 2021. "Leaching of Chlorides, Sulphates, and Phosphates from Ashes Formed as a Result of Burning Conventional Fuels, Alternative Fuels, and Municipal Waste in Household Furnaces," Energies, MDPI, vol. 14(13), pages 1-18, June.
    12. Mariusz Jerzy Stolarski & Michał Krzyżaniak & Kazimierz Warmiński & Dariusz Załuski & Ewelina Olba-Zięty, 2020. "Willow Biomass as Energy Feedstock: The Effect of Habitat, Genotype and Harvest Rotation on Thermophysical Properties and Elemental Composition," Energies, MDPI, vol. 13(16), pages 1-17, August.
    13. Mariusz Jerzy Stolarski & Łukasz Gil & Michał Krzyżaniak & Ewelina Olba-Zięty & Ai-Min Wu, 2024. "Willow, Poplar, and Black Locust Debarked Wood as Feedstock for Energy and Other Purposes," Energies, MDPI, vol. 17(7), pages 1-26, March.
    14. Rahman, Abdur & Marufuzzaman, Mohammad & Street, Jason & Wooten, James & Gude, Veera Gnaneswar & Buchanan, Randy & Wang, Haifeng, 2024. "A comprehensive review on wood chip moisture content assessment and prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
    16. Esperanza Monedero & Henar Portero & Magín Lapuerta, 2018. "Combustion of Poplar and Pine Pellet Blends in a 50 kW Domestic Boiler: Emissions and Combustion Efficiency," Energies, MDPI, vol. 11(6), pages 1-17, June.
    17. Krzysztof Mudryk & Marcin Jewiarz & Marek Wróbel & Marcin Niemiec & Arkadiusz Dyjakon, 2021. "Evaluation of Urban Tree Leaf Biomass-Potential, Physico-Mechanical and Chemical Parameters of Raw Material and Solid Biofuel," Energies, MDPI, vol. 14(4), pages 1-14, February.
    18. Mariusz Jerzy Stolarski & Kazimierz Warmiński & Michał Krzyżaniak, 2020. "Energy Value of Yield and Biomass Quality of Poplar Grown in Two Consecutive 4-Year Harvest Rotations in the North-East of Poland," Energies, MDPI, vol. 13(6), pages 1-13, March.
    19. Mariusz Jerzy Stolarski & Paweł Dudziec & Ewelina Olba-Zięty & Paweł Stachowicz & Michał Krzyżaniak, 2022. "Forest Dendromass as Energy Feedstock: Diversity of Properties and Composition Depending on Systematic Genus and Organ," Energies, MDPI, vol. 15(4), pages 1-60, February.
    20. Mohamed A. Hassaan & Ahmed El Nemr & Marwa R. Elkatory & Safaa Ragab & Mohamed A. El-Nemr & Antonio Pantaleo, 2021. "Synthesis, Characterization, and Synergistic Effects of Modified Biochar in Combination with α-Fe 2 O 3 NPs on Biogas Production from Red Algae Pterocladia capillacea," Sustainability, MDPI, vol. 13(16), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:7973-:d:1296776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.